Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36 fb(-1) of proton-proton collision data at root s=13 TeV with the ATLAS detector
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0000-0001-6945-1916
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0000-0003-3867-0336
KTH, School of Engineering Sciences (SCI), Physics, Particle and Astroparticle Physics.ORCID iD: 0000-0002-8015-7512
Show others and affiliations
Number of Authors: 29162018 (English)In: Physical Review D. Particles and fields, ISSN 0556-2821, E-ISSN 1089-4918, Vol. 98, no 5, article id 052008Article in journal (Refereed) Published
Abstract [en]

Searches for new heavy resonances decaying into different pairings of W, Z, or Higgs bosons, as well as dirffiffiffiectly into leptons, are presented using a data sample corresponding to 36.1 fb(-1) of pp collisions at root s = 13 TeV collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. Analyses selecting bosonic decay modes in the qqqq, vvqq, evqq, eeqq, evev, eevv, evee, eeee, qqbb, vvbb, evbb, and eebb final states are combined, searching for a narrow-width resonance. Likewise, analyses selecting the leptonic ev and ee final states are also combined. These two sets of analyses are then further combined. No significant deviation from the Standard Model predictions is observed. Three benchmark models are tested: a model predicting the existence of a new heavy scalar singlet, a simplified model predicting a heavy vector-boson triplet, and a bulk Randall-Sundrum model with a heavy spin-2 Kaluza-Klein excitation of the graviton. Cross section limits are set at the 95% confidence level using an asymptotic approximation and are compared with predictions for the benchmark models. These limits are also expressed in terms of constraints on couplings of the heavy vector-boson triplet to quarks, leptons, and the Higgs boson. The data exclude a heavy vector-boson triplet with mass below 5.5 TeV in a weakly coupled scenario and 4.5 TeV in a strongly coupled scenario, as well as a Kaluza-Klein graviton with mass below 2.3 TeV.

Place, publisher, year, edition, pages
Springer, 2018. Vol. 98, no 5, article id 052008
National Category
Subatomic Physics
Identifiers
URN: urn:nbn:se:kth:diva-236067DOI: 10.1103/PhysRevD.98.052008ISI: 000445727900001OAI: oai:DiVA.org:kth-236067DiVA, id: diva2:1255888
Funder
Wallenberg Foundations
Note

QC 20181015

Available from: 2018-10-15 Created: 2018-10-15 Last updated: 2018-10-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records BETA

Kastanas, Konstatinos A.Lund-Jensen, BengtOhm, ChristianRipellino, GiuliaSidebo, P. EdvinStrandberg, Jonas

Search in DiVA

By author/editor
Kastanas, Konstatinos A.Lund-Jensen, BengtOhm, ChristianRipellino, GiuliaSidebo, P. EdvinStrandberg, Jonas
By organisation
Particle and Astroparticle Physics
In the same journal
Physical Review D. Particles and fields
Subatomic Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf