Nonmodal instability analysis is carried out for a 2:1 elliptic cone with base flow conditions selected for a Ma=7 and two different ight altitudes, namely 33km and 21km with unit Reynolds number Re′ = 1.89 x 106 m-1 and Re′ = 1.015 x 107 m-1, respectively. The aim is to analyze the effects of transiently growing optimal disturbances and their possible relation to instability mechanisms that have been confirmed to exist in previous modal crossow. Local linear stability results obtained at several streamwise locations on the cone surface indicate that transient growth in the crossow region may be correlated to streamwise oriented structures having spanwise spacing of the same order of magnitude as which have long been known to exist in this flow.
QC 20181031