Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Beam test measurements of Low Gain Avalanche Detector single pads and arrays for the ATLAS High Granularity Timing Detector
Univ Paris Saclay, Univ Paris Sud, CNRS IN2P3, LAL, Orsay, France..
Univ Iowa, Iowa City, IA USA..
UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.;Univ Paris Diderot, Paris, France.;CNRS IN2P3, Paris, France..
UPMC, Lab Phys Nucl & Hautes Energies, Paris, France.;Univ Paris Diderot, Paris, France.;CNRS IN2P3, Paris, France..
Show others and affiliations
2018 (English)In: Journal of Instrumentation, ISSN 1748-0221, E-ISSN 1748-0221, Vol. 13, article id P06017Article in journal (Refereed) Published
Abstract [en]

For the high luminosity upgrade of the LHC at CERN, ATLAS is considering the addition of a High Granularity Timing Detector (HGTD) in front of the end cap and forward calorimeters at vertical bar z vertical bar = 3:5 m and covering the region 2:4 < vertical bar eta vertical bar < 4 to help reducing the effect of pile-up. The chosen sensors are arrays of 50 mu m thin Low Gain Avalanche Detectors (LGAD). This paper presents results on single LGAD sensors with a surface area of 1.3 x 1.3 mm(2) and arrays with 2 x 2 pads with a surface area of 2 x 2 mm(2) or 3 x 3 mm(2) each and different implant doses of the p(+) multiplication layer. They are obtained from data collected during a beam test campaign in autumn 2016 with a pion beam of 120 GeV energy at the CERN SPS. In addition to several quantities measured inclusively for each pad, the gain, efficiency and time resolution have been estimated as a function of the position of the incident particle inside the pad by using a beam telescope with a position resolution of few mu m. Different methods to measure the time resolution are compared, yielding consistent results. The sensors with a surface area of 1.3 x 1.3 mm(2) have a time resolution of about 40 ps for a gain of 20 and of about 27 ps for a gain of 50 and fulfil the HGTD requirements. Larger sensors have, as expected, a degraded time resolution. All sensors show very good efficiency and time resolution uniformity.

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2018. Vol. 13, article id P06017
Keywords [en]
Si microstrip and pad detectors, Solid state detectors, Timing detectors
National Category
Other Engineering and Technologies
Identifiers
URN: urn:nbn:se:kth:diva-240238DOI: 10.1088/1748-0221/13/06/P06017ISI: 000436180900001Scopus ID: 2-s2.0-85049997990OAI: oai:DiVA.org:kth-240238DiVA, id: diva2:1272136
Note

QC 20181218

Available from: 2018-12-18 Created: 2018-12-18 Last updated: 2018-12-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Kastanas, Konstatinos A.

Search in DiVA

By author/editor
Kastanas, Konstatinos A.
By organisation
Physics
In the same journal
Journal of Instrumentation
Other Engineering and Technologies

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf