In this paper, we consider the distributed optimization problem, whose objective is to minimize the global objective function, which is the sum of local convex objective functions, by using local information exchange. To avoid continuous communication among the agents, we propose a distributed algorithm with a dynamic event-triggered communication mechanism. We show that the distributed algorithm with the dynamic event-triggered communication scheme converges to the global minimizer exponentially, if the underlying communication graph is undirected and connected. Moreover, we show that the event-triggered algorithm is free of Zeno behavior. For a particular case, we also explicitly characterize the lower bound for inter-event times. The theoretical results are illustrated by numerical simulations.
QC 20190305