kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the decay time of upconversion luminescence
KTH, School of Engineering Sciences (SCI), Applied Physics, Quantum and Biophotonics.ORCID iD: 0000-0002-8315-8166
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Theoretical Chemistry and Biology.
Show others and affiliations
2019 (English)In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372, Vol. 11, no 11, p. 4959-4969Article in journal (Refereed) Published
Abstract [en]

In this study, we systematically investigate the decay characteristics of upconversion luminescence (UCL) under anti-Stokes excitation through numerical simulations based on rate-equation models. We find that a UCL decay profile generally involves contributions from the sensitizer's excited-state lifetime, energy transfer and cross-relaxation processes. It should thus be regarded as the overall temporal response of the whole upconversion system to the excitation function rather than the intrinsic lifetime of the luminescence emitting state. Only under certain conditions, such as when the effective lifetime of the sensitizer's excited state is significantly shorter than that of the UCL emitting state and of the absence of cross-relaxation processes involving the emitting energy level, the UCL decay time approaches the intrinsic lifetime of the emitting state. Subsequently, Stokes excitation is generally preferred in order to accurately quantify the intrinsic lifetime of the emitting state. However, possible cross-relaxation between doped ions at high doping levels can complicate the decay characteristics of the luminescence and even make the Stokes-excitation approach fail. A strong cross-relaxation process can also account for the power dependence of the decay characteristics of UCL.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2019. Vol. 11, no 11, p. 4959-4969
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:kth:diva-246212DOI: 10.1039/C8NR10332AISI: 000462669600033PubMedID: 30839016Scopus ID: 2-s2.0-85062877182OAI: oai:DiVA.org:kth-246212DiVA, id: diva2:1296688
Note

QC 20190318

Available from: 2019-03-16 Created: 2019-03-16 Last updated: 2024-03-15Bibliographically approved
In thesis
1. Studies of optical properties of lanthanide upconversion nanoparticles for emerging applications.
Open this publication in new window or tab >>Studies of optical properties of lanthanide upconversion nanoparticles for emerging applications.
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

YTTERBY, a small village very close to Stockholm where I live, is the place in the world which has lent its name to the largest number of elements in the periodic table, namely four - YTTRIUM, YTTERBIUM, ERBIUM and TERBIUM. Three more lanthanide elements were discovered from the now empty quarry located in this village. By the time of their discoveries in the 19th century little could be known about their fantastic properties, the versatility of their use and functionality in what we now call nanotechnology. This is a circumstance that motivated me to rather recently enter lanthanide research, in particular studies of their outstanding optical properties for the purpose of information technology and energy harvesting.

So far, upconversion nanoparticles (UCNPs) have been much explored as unique spectral converters for various applications, like biotechnology, information technology and photovoltaic devices due to properties like sharp emission profiles, low autofluorescence and large anti-Stoke shifts. Still, there is much to explore and to understand in order to fully utilize the very unique properties of UCNPs. The kinetic dynamics of the upconversion process is one such aspect that is not well understood, and a deeper understanding of the kinetic dynamics of lanthanide upconversion systems could thus broaden their applications. Therefore, the work of this thesis is focused on investigating the kinetic dynamics of upconversion processes mainly based on systems with NaYF4 as host material, and Yb3+/Er3+ or Yb3+/Tm3+ embedded as sensitizer/activator. Through rate equation models, the kinetic dynamics of upconversion are comparatively investigated with numerical simulations and analytical derivation. The temporal response regarding upconverted luminescence and quantum yield power density dependence, excitation duration response and excitation frequency response of the upconversion systems are investigated and the corresponding applications for multicolor imaging, optical encoding, photovoltaics, IR photodetectors are explored and analyzed in the thesis, taking advantage of the kinetic properties.

Abstract [sv]

YTTERBY, en liten by nära Stockholm där jag bor, är den plats i världen som har lånat sitt namn till det högsta antalet element i det periodiska systemet, nämligen fyra - YTTRIUM, YTTERBIUM, ERBIUM och TERBIUM. Ytterligare tre lantanidelement upptäcktes från det nu tomma stenbrottet som ligger i denna by. Vid deras upptäckter på 1800-talet kunde man inte ana deras fantastiska egenskaper, mångsidigheten i deras användning och deras funktionalitet i det vi nu kallar nanoteknologi. Detta är en omständighet som motiverade mig ganska nyligen att intressera mig för lantanidforskning, i synnerhet studier av deras enastående optiska egenskaper och deras energitillämpningar och användning inom informationsteknik.

Hittills har uppkonverterande nanopartiklar (UCNPs) utforskats mycket som unika spektralkonverterare för olika applikationer, som bioteknik, informationsteknologi och fotovoltaiska enheter på grund deras egenskaper som skarpa emissions profiler, låg autofluorescens och stora anti-Stoke skift. Det finns fortfarande mycket att utforska och förstå för att utnyttja de mycket unika egenskaperna hos dessa partiklar. Den kinetiska dynamiken i upkonverteringsprocessen är en sådan aspekt som inte är väl undersökt ännu, och en djupare förståelse av den kinetiska dynamiken i uppkonverterande lantanid system kan bredda deras tillämpningar. Därför har jag fokuserat arbetet med den här avhandlingen på att undersöka den kinetiska dynamiken i upkonverterings processen huvudsakligen baserat på system med NaYF4 som värdmaterial och Yb3+/Er3+ eller Yb3+/Tm3+ inbäddat som sensibilisator/aktivator. Genom simuleringar av ekvationsmodeller har jag undersökt den kinetiska dynamiken i uppkonversionen jämförande numerisk simulering och analytisk härledning. Det temporära svaret med avseende på uppkonverterad luminescens, det s.k. täthetsberoendet av kvantutbytet och excitation frekvens responsen för olika upkonversionssystem har studerats. Motsvarande tillämpningar för flerfärgs avbildning, optisk kodning, fotovoltaik och IR fotodetektorer undersöks och analyseras i avhandlingen, med speciell fokus på de kinetiska egenskaperna.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. p. 73
Series
TRITA-CBH-FOU ; 2020:18
Keywords
Upconversion nanoparticles, solar cells sensitization, near infrared photodetector, multiplex imaging, optical encoding, information technology, bioimaging, rate equation models
National Category
Nano Technology
Research subject
Theoretical Chemistry and Biology
Identifiers
urn:nbn:se:kth:diva-273038 (URN)978-91-7873-500-6 (ISBN)
Public defence
2020-06-04, https://kth-se.zoom.us/webinar/register/WN_E0ALwYOFS-mP-vAFhp2QQw, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2020-05-14

Available from: 2020-05-14 Created: 2020-05-07 Last updated: 2022-09-19Bibliographically approved

Open Access in DiVA

fulltext(4778 kB)348 downloads
File information
File name FULLTEXT01.pdfFile size 4778 kBChecksum SHA-512
b791d84d45beb7b943daea39293be344c4abe76da3395a96e18833ab1659ed69577264ff0969e01b678bdba267d5af76249f50eff3b9d4ae06270f4d2e5b9f18
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Bergstrand, JanLiu, QingyunWidengren, JerkerÅgren, HansLiu, Haichun

Search in DiVA

By author/editor
Bergstrand, JanLiu, QingyunWidengren, JerkerÅgren, HansLiu, Haichun
By organisation
Quantum and BiophotonicsTheoretical Chemistry and Biology
In the same journal
Nanoscale
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 348 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 749 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf