Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Corrosion Studies of Low-Alloyed FeCrAl Steels in Liquid Lead at 750 degrees C
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Surface and Corrosion Science.
2019 (English)In: Oxidation of Metals, ISSN 0030-770X, E-ISSN 1573-4889, Vol. 91, no 3-4, p. 511-524Article in journal (Refereed) Published
Abstract [en]

New ductile experimental FeCrAl alloys, based on the composition of Fe-10Cr-4Al, were exposed to stagnant liquid lead at 750 degrees C for up to 1970h. Two exposures with different test conditions were performed: one with addition of oxygen (as H2O) to the liquid lead and one without. The experimental alloys showed generally good oxidation and self-healing properties. The exposures showed that this specific category of steels has the potential to operate in liquid lead at very high temperatures with only minor oxidation. With this new material development, new energy technologies such as the CSP plants may be able to utilize liquid lead at very high temperatures as heat transfer fluid, thus achieving increased thermal efficiency.

Place, publisher, year, edition, pages
SPRINGER/PLENUM PUBLISHERS , 2019. Vol. 91, no 3-4, p. 511-524
Keywords [en]
FeCrAl, CSP, Liquid lead, High-temperature corrosion
National Category
Materials Engineering
Identifiers
URN: urn:nbn:se:kth:diva-249800DOI: 10.1007/s11085-019-09896-zISI: 000462647800017Scopus ID: 2-s2.0-85060697910OAI: oai:DiVA.org:kth-249800DiVA, id: diva2:1306506
Note

QC 20190424

Available from: 2019-04-24 Created: 2019-04-24 Last updated: 2019-04-24Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records BETA

Szakalos, Peter

Search in DiVA

By author/editor
Dömstedt, PeterLundberg, MatsSzakalos, Peter
By organisation
Surface and Corrosion Science
In the same journal
Oxidation of Metals
Materials Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 51 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • harvard1
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf