kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nanocomposite functionalized membranes based on silica nanoparticles oss-linked to electrospun nanofibrous support for arsenic(v) sorption from contaminated underground water
UNMdP, CONICET, INTEMA, Div Ceram, B7608FDQ, Mar Del Plata, Buenos Aires, Argentina.
Show others and affiliations
2019 (English)In: RSC Advances, E-ISSN 2046-2069, Vol. 9, no 15, p. 8280-8289Article in journal (Refereed) Published
Abstract [en]

Nanocomposite functionalized membranes were synthesized using surface functionalized mesoporous silica nanoparticles (MCM-NH2 or MCM-PEI) cross-linked to a modified polyacrylonitrile (mPAN) nanofibrous substrate for the removal of 1 mg L-1 of As(V); a concentration much higher than what has been reported for underground water in Argentina. Adsorption studies were carried out in batch mode at pH 8 with nanoparticles in colloidal form, as well as the nanoparticles supported on the modified PAN membranes (mPAN/MCM-NH2 and mPAN/MCM-PEI). Results indicate a twenty-fold improvement in As(V) adsorption with supported nanoparticles (nanocomposite membranes) as opposed to their colloidal form. The adsorption efficiency could be further enhanced by modifying the nanocomposite membrane surface with Fe3+ (mPAN/MCM-NH2-Fe3+ and mPAN/MCM-PEI-Fe3+) which resulted in more than 95% arsenic being removed within the first 15 minutes and a specific arsenic adsorption capacity of 4.61 mg g(-1) and 5.89 mg g(-1) for mPAN/MCM-NH2-Fe3+ and mPAN/MCM-PEI-Fe3+ nanocomposite membranes, respectively. The adsorption characteristics were observed to follow a pseudo-first order behavior. The results suggest that the synthesized materials are excellent for quick and efficient reduction of As(V) concentrations below the WHO guidelines and show promise for future applications.

Place, publisher, year, edition, pages
Royal Society of Chemistry, 2019. Vol. 9, no 15, p. 8280-8289
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-248339DOI: 10.1039/c8ra09866bISI: 000461445300017PubMedID: 35518691Scopus ID: 2-s2.0-85063011404OAI: oai:DiVA.org:kth-248339DiVA, id: diva2:1313333
Note

QC 20190503

Available from: 2019-05-03 Created: 2019-05-03 Last updated: 2024-03-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Laxman Kunjali, KarthikDutta, JoydeepUheida, Abdusalam

Search in DiVA

By author/editor
Laxman Kunjali, KarthikDutta, JoydeepUheida, Abdusalam
By organisation
Applied Physics
In the same journal
RSC Advances
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 123 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf