kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tip-vortex instabilities of two in-line wind turbines
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics. Instituto Tecnológico de Aeronáutica, Praça Marechal Eduardo Gomes, 50, Vila das Acácias, 12228-900, São José dos Campos – SP, Brazil.ORCID iD: 0000-0001-9360-7300
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics.ORCID iD: 0000-0003-2687-8148
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics.ORCID iD: 0000-0002-5913-5431
KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, School of Engineering Sciences (SCI), Mechanics.ORCID iD: 0000-0001-7864-3071
2019 (English)In: Journal of Physics: Conference Series, Institute of Physics (IOP), 2019, Vol. 1256, p. 012015-Conference paper, Published paper (Refereed)
Abstract [en]

The hydrodynamic stability of a vortex system behind two in-line wind turbines operating at low tip-speed ratios is investigated using the actuator-line method in conjunction with the spectral-element flow solver Nek5000. To this end, a simplified setup with two identical wind turbine geometries rotating at the same tip-speed ratio is simulated and compared with a single turbine wake. Using the rotating frame of reference, a steady solution is obtained, which serves as a base state to study the growth mechanisms of induced perturbations to the system. It is shown that, already in the steady state, the tip vortices of the two turbines interact with each other, exhibiting the so-called overtaking phenomenon. Hereby, the tip vortices of the upstream turbine overtake those of the downstream turbine repeatedly. By applying targeted harmonic excitations at the upstream turbine's blade tips a variety of modes are excited and grow with downstream distance. Dynamic mode decomposition of this perturbed flow field showed that the unstable out-of-phase mode is dominant, both with and without the presence of the second turbine. The perturbations of the upstream turbine's helical vortex system led to the destabilization of the tip vortices shed by the downstream turbine. Two distinct mechanisms were observed: for certain frequencies the downstream turbine's vortices oscillate in phase with the vortex system of the upstream turbine while for other frequencies a clear out-of-phase behaviour is observed. Further, short-wave instabilities were shown to grow in the numerical simulations, similar to existing experimental studies [1].

Place, publisher, year, edition, pages
Institute of Physics (IOP), 2019. Vol. 1256, p. 012015-
National Category
Fluid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-251408DOI: 10.1088/1742-6596/1256/1/012015ISI: 000560954100015Scopus ID: 2-s2.0-85070017009OAI: oai:DiVA.org:kth-251408DiVA, id: diva2:1315536
Conference
Wake Conference 2019 22–24 May 2019, Visby, Sweden
Note

QC 20220921

Available from: 2019-05-14 Created: 2019-05-14 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Wind-turbine wakes - Effects of yaw, shear and turbine interaction
Open this publication in new window or tab >>Wind-turbine wakes - Effects of yaw, shear and turbine interaction
2019 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Vindturbinsvakar –Effekten av girning, skjuvning och turbininteraktion
Abstract [en]

The actuator-line method is used together with the incompressible Navier–Stokes equations to investigate the flow development behind wind turbines. Initial investigations focus on providing a thorough validation of the implementation in the spectral-element flow solver Nek5000 against existing numerical and experimental datasets. It is shown that the current implementation gives an accurate representation of the flow field for different turbine geometries, inflow conditions, yaw misalignment, and when considering multiple turbines. This enables an in-depth study of the wake physics in these configurations.

The yawed wind-turbine wake development is shown to depend on the tip-speed ratio, both in terms of the wake deficit and the generation of the counter-rotating vortices known to occur in yawed turbine wakes. For lower tip-speed ratios the wake deficit exhibited significant asymmetries with respect to the horizontal plane due to the advancing/retreating effect. At high tip-speed ratios this effect became negligible compared to the skewed wake effect, which affects the symmetry with respect to the vertical plane. These inhomogeneities in the averaged wake development also affect the tip-vortex breakdown, leading to different locations of the tip-vortex breakdown along the wake azimuth due to the significant azimuthal variations of the tip-vortex strength and convection velocity. An analysis of the interaction of a yawed wind-turbine wake with a sheared inflow exposed a dependency of the wake deflection and recovery on the yaw orientation, which then resulted in significant differences in the combined power output of a two-turbine setup. More detailed studies of the tip-vortex breakdown in sheared flows using single-frequency perturbations revealed that a sheared inflow changes the spatial growth rate of the tip vortices along the vertical axis, due to the varying tip-vortex convection velocity. However, by applying a scaling based on local vortex parameters, the growth rates collapse to the canonical case of an infinite row of point vortices. Finally, an idealized scenario of two in-line turbines with a steady tip-vortex development is investigated. By applying a range of controlled perturbations, modes were excited, which exhibited in-phase or out-of-phase displacement between the vortex system of the upstream and the downstream turbine for certain frequencies.

Abstract [sv]

Den så kallade actuator line-metoden används tillsammans med inkompressibla Navier–Stokes ekvationer för att undersöka strömningens utveckling bakom vindturbiner. Inledande studier syftar till att utförligt validera implementationen i spektralelementkoden Nek5000 mot befintliga numeriska och experimentella datamängder. Det visas att den nuvarande implementationen ger en noggrann representation av strömningsfältet för alla undersökta turbingeometrier. Vidare fångas utvecklingen hos vaken väl för en rad olika inflödesvillkor, förturbingirning, och under interaktion mellan flera turbiner.

Vakutvecklingen för en girad turbin visas bero signifikant på kvoten mellan vingspetsens och friströmmens hastighet, både när det gäller hastighetsunderskottet i vaken och bildningen av de motroterande vakvirvlarna. För låga hastighetskvoter mellan vingspetsen och friströmmen uppvisar vakens hastighetsunderskott en betydande asymmetri med avseende på horisontalplanet genom en så kallad avancerande/retirerande effekt. För höga hastighetskvoter blir denna effekt däremot försumbar i jämförelse med vakens skevhet som påverkar symmetrin med avseende på vertikalplanet. Dessa inhomogeniteter i den medelvärdesbildade vakutvecklingen påverkar också det turbulenta nedbrottet hos vingspetsvirvlarna, vilket inträffar vid olika positioner i vinkelled på grund av signifikanta vinkelvariationer hos virvelstyrkan och konvektionshastigheten. En analys of interaktionen mellan en girad turbinvak och en inkommande skjuvströmning avslöjar ett beroende hos vakens förskjutning och återhämtning på girningens riktning, vilket resulterar i betydande skillnader i den sammantagna effekten hos två turbiner. Mer detaljerade studier av spetsvirvlarnas nedbrott i skjuvströmningar med enfrekvensstörningar visar att ett skjuvat inflöde förändrar den spatiella tillväxtgraden längs den vertikala axeln på grund av varierande konvektionshastighet hos spetsvirvlarna.Tillväxtgraderna sammanfaller dock med motsvarande värde för det klassiska fallet med två oändliga virvelrader, om de skalas med lokala virvelparametrar. Slutligen studeras en stationär virvelutveckling för ett idealiserat fall bestående av två turbiner i linje med varandra. Genom att applicera en rad kontrollerade störningar, exciteras moder som beroende på frekvens uppvisar förskjutningar i eller ur fas med virvelsystemen från turbinen uppströms och nedströms.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2019. p. 58
Series
TRITA-SCI-FOU ; 2019:29
Keywords
wind-turbine wakes, yaw, tip-vortex breakdown, shear, computational fluid dynamics, actuator-line method, spectral-element method, Vindturbinsvakar, girning, turbulent nedbrott hos spetsvirvlar, skjuvning, vakinteraktion, beräkningsströmningsdynamik, actuator line-metod, spektralelementmetod
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-251450 (URN)
Public defence
2019-06-04, H1, Teknikringen 33, Stockholm, 13:50 (English)
Opponent
Supervisors
Funder
Swedish Energy AgencyStandUp for Wind
Note

QC20190514

Available from: 2019-05-14 Created: 2019-05-14 Last updated: 2025-02-09Bibliographically approved
2. On stability of vortices and vorticity generated by actuator lines
Open this publication in new window or tab >>On stability of vortices and vorticity generated by actuator lines
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Vortices are present in nature and in many flows of industrial importance. The stability of configurations of vortices can have real-world consequences, because vortices play a crucial role in accelerated mixing. In particular, vortices are present in the wake of wind turbines and other rotors. Their blades create a system of multiple helical tip and hub vortices in the wake. The stability of the tip vortices greatly influences the wake recovery behind a turbine and, consequently, can affect the power production and fatigue of a downstream wind turbine in clustered wind farms. Also, concentrated vortices can cause vortex-structure interaction which increases vibration and noise. In this work, the stability of vortices is studied by analytical models and Navier-Stokes simulations. The vorticity generated in these simulations was studied in order to develop improvements to the numerical methods used to simulate blades and wings.

Numerical simulations of a moving rotor, representing a floating offshore wind turbine, showed that the wake is dominated by the stability modes predicted by the linear stability theory. Also, the observation that the stability of helical vortices has properties that can be related to the stability of a two-dimensional row of vortices, also noted previously in other works, motivated the development of a new formulation to study the stability of two-dimensional potential flows, based on the bicomplex algebra. Models based on vortex filaments and the Biot-Savart law were developed to study the stability of the system of multiple helical vortices created by turbine blades. The results indicate that the linear stability of the tip vortices is independent of the linear stability of the hub vortices (and vice-versa). For more complex configurations, such as two in-line turbines or blades that create multiple vortices near the tip, the numerical simulations and analytical studies indicate a more complex scenario, with multiple vortices interacting.

The Navier-Stokes simulations employ the actuator line method (ALM), which is a method used to model blades that allows coarser grids, reducing computational costs. In this method, the blades are represented by body forces that are calculated from the local flow velocity and airfoil data. However, until recently, the actuator line method misrepresented the forces near the tip of the blades. The recently developed vortex-based smearing correction resolved some of these limitations. In this work, the understanding of the vorticity generated by actuator lines is used to develop more accurate corrections for the velocity induced by a smeared vortex segment and for the magnitude of the vorticity generated in the simulations. Also, a non-iterative procedure for the smearing correction is proposed based on the lifting line method. These modifications improve the agreement of the ALM with a non-linear lifting line method. For the first time, configurations typical of airplane aerodynamics are simulated with the ALM, such as a wing with winglets and a combination of horizontal and vertical tails. The accuracy of these results may motivate other communities to adopt the ALM for a diverse set of applications, beyond rotor aerodynamics.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022
Series
TRITA-SCI-FOU ; 2022:46
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-318631 (URN)978-91-8040-348-1 (ISBN)
Public defence
2022-10-13, Kollegiesalen, Brinellvägen 8, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
KTH Royal Institute of Technology
Note

QC 220922

Available from: 2022-09-22 Created: 2022-09-22 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Kleine, Vitor G.Kleusberg, ElektraHanifi, ArdeshirHenningson, Dan S.

Search in DiVA

By author/editor
Kleine, Vitor G.Kleusberg, ElektraHanifi, ArdeshirHenningson, Dan S.
By organisation
Linné Flow Center, FLOWSeRC - Swedish e-Science Research CentreFluid Mechanics and Engineering AcousticsMechanics
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 213 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf