Data learning and expert judgment in a bayesian belief network for offshore decommissioning risk assessmentShow others and affiliations
2018 (English)In: Safety and Reliability - Safe Societies in a Changing World: Proceedings of the 28th International European Safety and Reliability Conference, ESREL 2018, CRC Press/Balkema , 2018, p. 397-406Conference paper, Published paper (Refereed)
Abstract [en]
Decommissioning of offshore facilities involve changing risk profiles at different decommissioning phases. Bayesian Belief networks (BBNs) are used as part of the proposed risk assessment method to capture the multiple interactions of a decommissioning activity. The Bayesian Belief network is structured from the data learning of an accident database and a modification of the BBN nodes to incorporate human factors and barrier performance modelling. The analysis covers one case study of one area of decommissioning operations by extrapolating well workover data to well plugging and abandonment. Initial analysis from well workover data, of a 5-node BBN provided insights on two different levels of severity of an accident, the “Accident” and “Incident” level, and on its respective profiles of the initiating events and the investigation-reported human causes. The initial results demonstrate that the data learnt from the database can be used to structure the BBN, and give insights on how human factors pertaining to well activities can be modelled, and that the relative frequencies can act as initial data input for the proposed nodes. It is also proposed that the integrated treatment of various sources of information (database and expert judgement) through a BBN model can support the risk assessment of a dynamic situation such as offshore decommissioning.
Place, publisher, year, edition, pages
CRC Press/Balkema , 2018. p. 397-406
Keywords [en]
Accidents, Database systems, Decision theory, Decommissioning (nuclear reactors), Human engineering, Offshore oil well production, Reliability, Risk assessment, Well workover, Barrier performance, Decommissioning activities, Multiple interactions, Offshore decommissioning, Offshore facilities, Relative frequencies, Risk assessment methods, Sources of informations, Bayesian networks
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-246564ISI: 000549917600049Scopus ID: 2-s2.0-85058090632OAI: oai:DiVA.org:kth-246564DiVA, id: diva2:1318372
Conference
28th Annual International European Safety and Reliability Conference (ESREL), JUN 17-21, 2018, Trondheim, NORWAY
Note
Part of proceedings: ISBN 978-1-351-17466-4, ISBN 978-0-8153-8682-7
QC 20190527
2019-05-272019-05-272022-09-26Bibliographically approved