kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
FR8RAIL Y25 running gear for high tonnage and speed
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles.ORCID iD: 0000-0002-4477-971X
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles.ORCID iD: 0000-0002-6346-6620
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles.ORCID iD: 0000-0003-1583-4625
KTH, School of Engineering Sciences (SCI), Aeronautical and Vehicle Engineering, Rail Vehicles.ORCID iD: 0000-0002-8237-5847
2019 (English)In: Proceeedings of the International Heavy Haul Association STS Conference 2019 / [ed] P.O. Larsson-Kråik, A. Ahmadi, Narvik, 2019, p. 690-697Conference paper, Published paper (Refereed)
Abstract [en]

The rolling stock in railway freight transport has traditionally been mainly characterised by lowcost, long lifetime of the fleet, and relatively low requirements on running behaviour. However, the sector inEurope has acknowledged that in order to be competitive there is a need to develop more advanced wagons thatenable to maximise payload and speed in different scenarios, while reducing the overall system costs, includingwheelset and track deterioration. In the Shift2Rail project FR8RAIL, a consortium of wagon manufacturers,wheelset manufacturers, and research centres has worked to develop a new generation of the widely used robustY25 freight running gear, that minimises maintenance costs both on the vehicle and the track by improving thecurving performance and hunting stability. The dynamic behaviour of the proposed solutions has been studiedwith simulations-based EN14363 tests up to 30 tons/axle, and their expected impact on wheel wear and fatiguehas also been predicted, with satisfactory results regarding both damage modes.

Place, publisher, year, edition, pages
Narvik, 2019. p. 690-697
National Category
Vehicle Engineering
Research subject
Järnvägsgruppen - Fordonsteknik
Identifiers
URN: urn:nbn:se:kth:diva-255024OAI: oai:DiVA.org:kth-255024DiVA, id: diva2:1337288
Conference
International Heavy Haul Association STS Conference, on the 10th – 14th June 2019, in Narvik, Norway.
Funder
EU, Horizon 2020, 730617
Note

Part of proceedings 9780911382709  9780911382716

QC 20190827

Available from: 2019-07-12 Created: 2019-07-12 Last updated: 2024-03-18Bibliographically approved
In thesis
1. Long freight trains and long-term rail surface damage
Open this publication in new window or tab >>Long freight trains and long-term rail surface damage
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Track damage due to progressively increasing tonnage, especially due to longer and heavier freight trains, is one of the major problems faced in the European rail sector. In this context, to stay competitive, optimal track maintenance practices, track-friendly vehicles and safe operations of long freight trains assume prominence.

This PhD thesis studies long freight train operations and the long-term rail surface damage that they cause, to build a computer simulation-based framework for maintenance planning and assessment of running safety. 

The framework is formulated with four parts: long freight train operations, vehicle dynamics, rail surface damage and track maintenance. This is followed by a literature survey on each of the subtopics and how they are linked to each other.Safe operation of long freight trains in infrastructure bottlenecks such as S-curves is studied using three-dimensional multi-body simulations. Based on this, guidelines to build long freight trains and driving scenarios that can keep longitudinal in-train forces within acceptable limits have been provided. 

Multi-body simulation models of various freight bogies, including a novel design, are built and their dynamic running behaviour studied according to EN standards. The key focus is on track-loading and to this effect, methodologies for simulations-based assessment of `track-friendliness' of various bogie designs are studied. Various approaches to quantify rail surface damage using multi-body simulations in the form of wear and Rolling Contact Fatigue (RCF) are studied. Based on this, measures to ascertain similarities and differences in results from different approaches have been put forward. 

The impact of track maintenance, in the form of periodic rail reprofiling activities in different networks, on the evolution of rail surface damage is studied. It is found that optimal maintenance planning can be tailored depending on the type of traffic on the network.

Finally, various parts of the framework have been brought together to form a `train-track interaction' approach to facilitate optimal maintenance planning.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. 95
Series
TRITA-SCI-FOU ; 2022:01
Keywords
track friendliness; rail surface damage; multi-body simulation; longitudinal train dynamics; track maintenance; rolling contact fatigue, wear
National Category
Mechanical Engineering Vehicle Engineering Applied Mechanics
Research subject
Engineering Mechanics; Vehicle and Maritime Engineering; Järnvägsgruppen - Effektiva tågsystem för godstrafik
Identifiers
urn:nbn:se:kth:diva-307653 (URN)978-91-8040-130-2 (ISBN)
Public defence
2022-03-09, U1, Brinellvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
EU, Horizon 2020
Available from: 2022-02-07 Created: 2022-02-02 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Conference proceedings

Authority records

Krishna, Visakh VHossein Nia, SaeedCasanueva, CarlosStichel, Sebastian

Search in DiVA

By author/editor
Krishna, Visakh VHossein Nia, SaeedCasanueva, CarlosStichel, Sebastian
By organisation
Rail Vehicles
Vehicle Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 346 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf