kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Single-walled carbon nanotube layers for millimeter-wave beam steering
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.ORCID iD: 0000-0003-0368-1668
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.ORCID iD: 0000-0003-1443-403x
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.ORCID iD: 0000-0003-3339-9137
2019 (English)In: Nanoscale, ISSN 2040-3364, E-ISSN 2040-3372Article in journal (Refereed) Published
Abstract [en]

The ability to efficiently transmit and manipulate high-frequency signals poses major challenges resulting in a lack of active and reconfigurable millimeter-wave and terahertz devices that are needed to enable beyond-5G broadband communication systems. Here, thin single-walled carbon nanotube (SWCNT) layers are introduced as a tunable impedance surface for millimeter-waves. Carbon nanotube layers are integrated with dielectric rod waveguides. Their surface impedance, tuned by light, is shown to modify the wave propagation inside the waveguide. A direct application of the effect is a phase shifter, demonstrated experimentally and by numerical simulations. Additionally, an antenna array of two dielectric waveguides, one covered in SWCNTs, is designed and fabricated. The proof-of-concept illustrates optically-controlled beam steering enabled by carbon nanotubes, and directions for further device optimizations are provided. These findings demonstrate thin SWCNT layers as an optically-reconfigurable element, suitable for broadband millimeter-wave communications.

Place, publisher, year, edition, pages
2019.
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-255274DOI: 10.1039/c9nr02705jISI: 000484297400017PubMedID: 31343028Scopus ID: 2-s2.0-85070838328OAI: oai:DiVA.org:kth-255274DiVA, id: diva2:1339063
Funder
EU, Horizon 2020, 675683EU, Horizon 2020, 616846
Note

QC 20190729

Available from: 2019-07-25 Created: 2019-07-25 Last updated: 2022-06-26Bibliographically approved
In thesis
1. Tunable Nanomaterials and their Applications for Terahertz Devices: Carbon Nanotubes and Silver Nanowires
Open this publication in new window or tab >>Tunable Nanomaterials and their Applications for Terahertz Devices: Carbon Nanotubes and Silver Nanowires
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The interest in terahertz (THz) technologies is growing in academia and industry. The design of electronic components at THz frequencies is relevant to application areas such as telecommunication, radar, material spectroscopy, and medical imaging and diagnosis. Even though high-performance THz instrumentation becomes more available, the systems are not commonly found outside of the laboratory environment. Researchers have recently demonstrated a platform based on dielectric rod waveguides (DRWs) that is suitable for integrating THz electronics. The electromagnetic waves propagate inside a low-loss dielectric structure, a concept similar to optical fibres. DRWs have seen many advances for THz electronics in recent years. However, the platform still lacks essential active and passive components for building complete systems. 

This thesis investigates ways to integrate tunable nanomaterials to dielectric waveguides in order to design novel terahertz devices. First, silicon rectangular DRWs are investigated at 75 GHz to 500 GHz frequencies. In particular, the interface with the measurement instrumentation and the tapered transitions to hollow metallic waveguides are considered by electromagnetic simulations. Additionally, ways to implement phase shifters and attenuators are explored using thin layers of nanomaterials that are modelled by an impedance surface in the simulations. 

Second, several nanomaterials are studied by optical spectrophotometry, Raman spectroscopy, and terahertz time-domain and frequency- domain spectroscopy. Thin layers of silver nanowires are fabricated with increasing densities, ranging from individual nanowires to nanowire networks at the percolation threshold, to thick semi-continuous layers. This technique allows the manufacturing of optically transparent samples with a tunable THz conductivity. Additionally, thin layers of single-walled carbon nanotubes are investigated. Their dielectric properties are shown to be tunable by light illumination, supported by measurements at low frequencies and in the terahertz range. 

Finally, tunable THz devices based on dielectric waveguides are designed, manufactured, and characterized. Thin layers of carbon nanotubes are integrated with DRWs and used as a surface impedance to modify the wave propagation in the waveguide. The presented phase shifters are tunable by light with wideband operation at sub-THz and potentially higher frequencies, and further device improvements are proposed. 

Abstract [sv]

Intresset för terahertz (THz) -teknologi ökar både i den akademiska världen och inom industrin. Design av elektroniska komponenter i THz-frekvenser är relevanta för applikationsområden som telekommunikation, radar, materialspektroskopi och medicinsk bildbehandling och diagnostik. Även om högpresterande THz-instrumentering blir mer tillgängligt finns systemen ofta inte utanför laboratoriemiljöer. Forskare har nyligen demonstrerat en plattform baserad på dielektriska vågledare (DRWs) som är lämplig för att integrera THz-elektronik. De elektromagnetiska vågorna sprids inuti en lågförlustdielektrisk struktur, ett koncept som liknar den optiska fibern. DRW har sett många framsteg för THz-elektronik på senare år. Plattformen saknar dock fortfarande väsentliga aktiva och passiva komponenter för att bygga kompletta system. 

Denna avhandling undersöker olika sätt att integrera avstämbara nanomaterial till dielektriska vågledare för att designa nya terahertzenheter. Först undersöks rektangulära kisel-DRWs vid frekvenserna 75 GHz till 500 GHz. I synnerhet används elektromagnetiska simuleringar för att efterlikna gränssnittet mellan mätinstrumentet och de avsmalnande övergångarna till de ihåliga metalliska vågledarna. Dessutom utforskas sätt för att implementera  fasväxlare och dämpare med hjäp av tunna lager av nanometrial som modelleras av en impedansyta i simuleringarna. 

Sedan studeras även flera nanomaterial genom optisk spektrofotometri, Ramanspektroskopi och terahertztidsdomän- och frekvensdomänspektroskopi. Tunna lager av silvernanotrådar tillverkas med ökande densiteter, allt från enskilda nanotrådar till nanotrådsnät vid perkolationströskeln, till tjockare halvkontinuerliga lager. Denna teknik möjliggör tillverkning av optiskt transparenta prover med en avstämbar THz-konduktivitet. Dessutom undersöks tunna lager av enkelväggiga kolnanorör. Deras dielektriska egenskaper påvisas vara avstämbara med belysning, vilket även stöds av mätningar vid låga frekvenser och i terahertz-omfånget. 

Slutligen designas, tillverkas och karakteriseras inställbara THz-enheter baserade på dielektriska vågledare. Tunna lager av kolnanorör integreras med DRW och används som ytimpedans för att ändra vågutbredningen i vågledaren. De presenterade fasskiftarna kan ställas in med hjälp av ljus med bredbandsoperationer vid sub-THz och potentiellt högre frekvenser, även ytterligare enhetsoptimeringar föreslås.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2021. p. 61
Series
TRITA-EECS-AVL ; 2021:33
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
urn:nbn:se:kth:diva-293982 (URN)978-91-7873-878-6 (ISBN)
Public defence
2021-06-07, MST Conference Room, Malvinas väg 10, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20210518

Available from: 2021-05-18 Created: 2021-05-11 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

fulltext(4657 kB)335 downloads
File information
File name FULLTEXT01.pdfFile size 4657 kBChecksum SHA-512
fab07ac50e20ed23a0e22d64e27d26c5a5c1f4e0f4dfa840b1d7710a4d40ead2d4155373ce205e7d21878646896f5196179220d910eea40243aa2bd92997d7e3
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Smirnov, SergueiLioubtchenko, DmitriOberhammer, Joachim

Search in DiVA

By author/editor
Smirnov, SergueiLioubtchenko, DmitriOberhammer, Joachim
By organisation
Micro and Nanosystems
In the same journal
Nanoscale
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 335 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 478 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf