This report present results from simulations of simply supported concrete slab bridges for railway traffic. The geometry follows the Swedish standard deck models according to design drawing B2447-2 and B2447-8, with span lengths ranging from 2-8 m. For each bridge four different configurations are studied; straight or skewed bridge deck and short or long edge beams. In addition, a case of higher mass due to increased ballast depth is studied. In total 78 different bridge configurations are included.
According to the numerical models the first natural frequency range from about 15-80 Hz depending on span length and configuration. In all simulations the first three modes of vibration are included. The limit criteria is a peak deck acceleration of 3.5 m/s2 when loaded by the HSLM-A train model. Including a speed safety factor 1.2 according to EN 1991-2 results in an allowable speed that range from 175-350 km/h depending on the bridge configuration. The allowable speed is somewhat higher for the skewed bridges compared to straight bridges. Increased mass results in lower acceleration but also lower resonance speed. An increase in ballast depth from 0.6 to 1.2 m generally results in lower allowable speed, except for the shortestbridges in the study.
It should be noted that the above conclusions are based only on simulations. Before upgrading these bridges to speeds higher than 200 km/h experimental validation is recommended. On the other hand, most existing real trains are likely to result insignificantly lower dynamic response compared to the HSLM-A trains.
QC 20191025