Herein we present the first scientific report on the commercially available Helux 33/16 - a heterofunctional poly(amido amine carboxylate) hyperbranched polymer (Native Helux). The Native Helux, built from diethyl maleate (DEM) and diaminohexane (HMDA), was characterized, in part aided by reverse engineering of a similar scaffold with the same monomers. Different purification methods resulted in higher molecular weight polymers ranging from 8.4 to 51.7 kDa (M-w), and the Helux considered the purest, having 10 mmol (primary and secondary amines)/g as well as 2-4 mmol carboxylic/g Helux. Additionally, aqueous-mediated postmodifications of Helux were achieved including Michael addition, guanylation, and ring-opening of sultone, as well as water/ethyl acetate-mediated amidation of imidazole-activated pentenoic acid. The inherent heterofunctionality of Helux, amines and carboxylic groups, was further explored by a one-component self-cross-linking approach that yielded a dendritic poly(amido amine) network with autofluorescence-exhibiting properties and a T-g of 59 degrees C. The Helux network exhibited a storage modulus (G') of 7.9 MPa at 25 degrees C and in dry state, and 0.9 MPa (G') when plasticized by 50 wt % swelling (in water) of the network. Finally, dendritic hydrogels based on Helux were produced by a spontaneous NHS-amidation reaction with difunctional 10kPEG-NHS. The mechanical properties of the hydrogels were found to be dependent on the curing temperature for the hydrogel, yielding a G' of 8 and 14.5 kPa, a stress at break of 11.5 and 22.7 kPa, and a strain-at-break of 161 and 163%, at 25 and 37 degrees C, respectively.
QC 20191029