Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The role of deep hydrocarbons in the global hydrocarbon budget
KTH, School of Industrial Engineering and Management (ITM), Energy Technology, Heat and Power Technology.ORCID iD: 0000-0003-0599-1635
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nowadays, the issue of global warming and related environmental problems got widespread awareness among scientific society, politics, the industry as well as it has affected our everyday life. The reason for such a negative impact on the atmosphere is attributed mainly to human activities. It is thought that one of the most dangerous greenhouse gases is carbon dioxide (CO2). Nevertheless, the problem of hydrocarbon emissions began to receive particular attention due to the exponential growth of methane emissions in the atmosphere. What is the reason for such behaviour and what about other hydrocarbons, first of all, ethane, propane and butane isomers? In this work, it was proposed that geological emissions, mainly the emission from the dissociation of natural gas hydrates is one of the main reasons for the dramatic rise in hydrocarbon emissions to the atmosphere. Natural gas hydrates are not only composed of methane and water cages but have in their structure a broad range of hydrocarbons, including ethane, propane, butanes and some others. 

The purpose of this thesis is to investigate the sources of non-methane volatile hydrocarbons in the atmosphere, examine their impact on the environment and explore the correlation of hydrocarbon emissions with CO2 emissions. 

To reveal the impact of natural gas hydrates to the hydrocarbon budget it was assumed, that hydrocarbons that are contributing to the natural gas hydrate formation have deep mantle origin. To confirm this hypotheses high-pressure high temperature investigation of propane and butanes were conducted. The results of this investigation are presented in this thesis. To model extreme thermobaric conditions the diamond-anvil cell technique with two-sided laser heating was used. The method of Raman spectroscopy was applied for the analysis. 

The results received show that propane and butane isomers stable in the pressure  up to 40 GPa at ambient temperature. Propane remains stable at temperatures up to 900 K. At temperatures >900 K chemical transformations of propane are starting to occur producing mixture of light alkanes.

Abstract [sv]

I dagens samhälle har global uppvärmning och relaterade miljöproblem blivit en högst aktuell fråga inom vetenskap, politik, näringsliv samt påverkat vår vardag på individnivå. Den huvudsakliga anledningen till den negativa påverkan på atmo-sfären tillskrivs mänskliga aktiviteter. Man tror att en av de farligaste växthusgaserna är koldioxid (CO2). Ändå har problemet med kolväteutsläpp fått särskild uppmärksamhet på grund av den exponentiella tillväxten av metanutsläpp i atmosfären. Vilka är orsakerna bakom detta fenomen, samt hur står det till med andra kolvätens påverkan: etan, propan och butanisomerer? En huvudhypotes i denna avhandling är att geologiska utsläpp, främst utsläpp som har att göra med dissociation av naturgashydrat, är en av de främsta orsakerna till den dramatiska ökningen av kolväteutsläpp till atmosfären. Naturgashydrater består inte bara av metan- och vattenburar, utan har ett brett spektrum av kolväten (in-klusive etan, propan, butaner och några andra) i sin struktur. Syftet med denna avhandling är att undersöka källor till flyktiga icke-metan kolväten i atmosfären, samt undersöka deras påverkan på miljön och undersöka korrelationen mellan kolväteutsläpp och koldioxidutsläpp. För att avslöja effekterna av naturgashydrater på kolvätebudgeten, antogs det i denna avhandling att kolväten som bidrar till naturgashydratbildningen har sitt ursprung i djupmanteln. För att bekräfta denna hypotes genomfördes en högtrycksundersökning av propan och butaner under hög temperatur. Resultatet av undersökningen presenteras i denna avhandling. För att modellera extrema termobariska förhållanden tillämpas en diamant-städcellteknik med dubbelsidig laseruppvärmning. I analysen till-lämpas metoden för Raman-spektroskopi. Resultaten visar att propan och butaner är stabila i tryckområdet 3-22 GPa vid omgivningstemperatur. Propan förblir stabil vid temperaturer upp till 900 K. Vid temperaturer> 900 K börjar kemiska transformationer av propan att ge en blandning av lätta alkaner.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. , p. 181
Series
TRITA-ITM-AVL ; 2020:4
Keywords [en]
Hydrocarbons, non-methane volatile hydrocarbons, carbon dioxide, methane, ethane, propane, butane, global warming, diamond-anvil cells, Raman spectroscopy, high pressure, high temperature, phase transition
National Category
Energy Engineering
Research subject
Energy Technology
Identifiers
URN: urn:nbn:se:kth:diva-267052ISBN: 978-91-7873-441-2 (print)OAI: oai:DiVA.org:kth-267052DiVA, id: diva2:1390718
Public defence
2020-02-24, Kollegiesalen, Brinellvagen 8, Stockholm, 09:30 (English)
Opponent
Supervisors
Available from: 2020-02-03 Created: 2020-02-03 Last updated: 2020-02-03Bibliographically approved
List of papers
1. Raman and IR Spectroscopy Studies on Propane at Pressures of Up to 40 GPa
Open this publication in new window or tab >>Raman and IR Spectroscopy Studies on Propane at Pressures of Up to 40 GPa
Show others...
2017 (English)In: Journal of Physical Chemistry A, ISSN 1089-5639, E-ISSN 1520-5215, Vol. 121, no 32, p. 6004-6011Article in journal (Refereed) Published
Abstract [en]

Raman and IR spectroscopy studies on propane were performed at pressures of up to 40 GPa at ambient temperatures using the diamond anvil cell technique. Propane undergoes three phase transitions at 6.4(5), 14.5(5), and 26.5(5) GPa in Raman spectroscopy and at 7.0(5), 14.0(5), and 27.0(5) GPa in IR spectroscopy. The phase transitions were identified using the Raman and IR splitting modes and the appearance or disappearance of peaks, which clearly corresponded to the changes in the frequencies of the modes as the pressure changed. Our results demonstrate the complex high-pressure behavior of solid propane.

Place, publisher, year, edition, pages
AMER CHEMICAL SOC, 2017
National Category
Environmental Engineering
Identifiers
urn:nbn:se:kth:diva-214335 (URN)10.1021/acs.jpca.7b05492 (DOI)000408180000009 ()2-s2.0-85027883887 (Scopus ID)
Note

QC 20170912. QC 20200203

Available from: 2017-09-12 Created: 2017-09-12 Last updated: 2020-02-03Bibliographically approved
2. High-pressure chemistry of propane
Open this publication in new window or tab >>High-pressure chemistry of propane
2020 (English)In: Minerals, ISSN 2075-163X, E-ISSN 2075-163XArticle in journal (Refereed) Submitted
Abstract [en]

This study is a comprehensive research of the propane's high-pressure and high-pressure high temperature behaviour using diamond-anvill cell technique combined with vibrational spectroscopy. As we have found, propane while being exposed to the high pressures (5-40 GPa) could exhibit three solid-solid phase transitions. With the applyimg of laser heating technique, propane could react with the formation of various hydrocarbon compounds and carbon. At temperatures less than 900 K and in the range of pressures from 3 to 22 GPa propane remains stable.

Place, publisher, year, edition, pages
MDPI, 2020
Keywords
Propane, high-pressure, DAC, Raman spectroscopy, IR spectroscopy, hydrocarbons
National Category
Physical Sciences
Research subject
Physics, Material and Nano Physics
Identifiers
urn:nbn:se:kth:diva-267050 (URN)
Note

QC 20200203

Available from: 2020-01-31 Created: 2020-01-31 Last updated: 2020-02-18Bibliographically approved
3. Raman high-pressure study of butane isomers up to 40 GPa
Open this publication in new window or tab >>Raman high-pressure study of butane isomers up to 40 GPa
2018 (English)In: AIP Advances, ISSN 2158-3226, E-ISSN 2158-3226, Vol. 8, no 11, article id 115104Article in journal (Refereed) [Artistic work] Published
Abstract [en]

Raman spectroscopy studies on n and i-butane were performed at pressures of up to 40 GPa at ambient temperatures using the DAC technique. Normal butane undergoes two phase transitions at 1.9(5) GPa and 2.9(5) GPa and isobutane at 2.7(5) GPa and 3.5(5) GPa. These phase transitions were identified based on observations of the splitting Raman modes and the appearance or disappearance of particular Raman peaks. Our results demonstrate the complex, high-pressure behavior of butane isomers.

Place, publisher, year, edition, pages
American Institute of Physics (AIP), 2018
Keywords
No keywords
National Category
Physical Sciences
Research subject
Physics, Material and Nano Physics
Identifiers
urn:nbn:se:kth:diva-267048 (URN)10.1063/1.5049481 (DOI)000451737400039 ()2-s2.0-85056078826 (Scopus ID)
Note

QC 20200203

Available from: 2020-01-31 Created: 2020-01-31 Last updated: 2020-02-03Bibliographically approved
4. Raman Spectroscopy Study on Chemical Transformations of Propane at High Temperatures and High Pressures
Open this publication in new window or tab >>Raman Spectroscopy Study on Chemical Transformations of Propane at High Temperatures and High Pressures
Show others...
2020 (English)In: Scientific Reports, ISSN 2045-2322, E-ISSN 2045-2322, Vol. 10, no 1483Article in journal (Refereed) Published
Abstract [en]

This study is devoted to the detailed in situ Raman spectroscopy investigation of propane C3H8 in laserheated diamond anvil cells in the range of pressures from 3 to 22 GPa and temperatures from 900 to 3000 K. We show that propane, while being exposed to particular thermobaric conditions, could react, leading to the formation of hydrocarbons, both saturated and unsaturated as well as soot. Our results suggest that propane could be a precursor of heavy hydrocarbons and will produce more than just sooty material when subjected to extreme conditions. These results could clarify the issue of the presence of heavy hydrocarbons in the Earth’s upper mantle.

Place, publisher, year, edition, pages
Nature Publishing Group, 2020
Keywords
No keywords
National Category
Physical Sciences
Research subject
Physics, Material and Nano Physics
Identifiers
urn:nbn:se:kth:diva-267049 (URN)10.1038/s41598-020-58520-7 (DOI)
Note

QC 20200203

Available from: 2020-01-31 Created: 2020-01-31 Last updated: 2020-02-18Bibliographically approved

Open Access in DiVA

fulltext(11886 kB)11 downloads
File information
File name FULLTEXT03.pdfFile size 11886 kBChecksum SHA-512
a7b209652a66bbbe5e4ad0d95cd96978315c2ef4a5280928d93669aa136cb74bb4ad0f5cbb6a1ed722cfaa8701b0e75ceded59f1218c8d9fc771c4db527be370
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Kudryavtsev, Daniil
By organisation
Heat and Power Technology
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 24 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 112 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf