kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Tuneable Microparticle Filters
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.ORCID iD: 0000-0002-1559-3692
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Micro and Nanosystems.ORCID iD: 0000-0003-0975-6253
KTH.
Keio University, Japan.
Show others and affiliations
2019 (English)In: 2019 IEEE 32nd International Conference on Micro Electro Mechanical Systems (MEMS), IEEE, 2019, p. 290-291, article id 8870801Conference paper, Published paper (Refereed)
Abstract [en]

We introduce microparticle filters with temperature tuneable size cut-off and surface energy. At room temperature, the filter cut-off is 164 ±23 μm, and the filter is water-absorbing/oil-repelling (hydrophilic). At 50 °C, the filter cut-off is 695±31 μm, and the filter is oil-absorbing/water-repelling (hydrophobic).

Place, publisher, year, edition, pages
IEEE, 2019. p. 290-291, article id 8870801
Series
Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS), ISSN 1084-6999
National Category
Nano Technology
Identifiers
URN: urn:nbn:se:kth:diva-268310DOI: 10.1109/MEMSYS.2019.8870801ISI: 000541142100082Scopus ID: 2-s2.0-85074356445OAI: oai:DiVA.org:kth-268310DiVA, id: diva2:1413661
Conference
32nd IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2019; Seoul; South Korea; 27 January 2019 through 31 January 2019
Note

QC 20200310

Available from: 2020-03-10 Created: 2020-03-10 Last updated: 2024-03-15Bibliographically approved
In thesis
1. Microfluidic Compartmentalization for Smart Materials, Medical Diagnostics and Cell Therapy
Open this publication in new window or tab >>Microfluidic Compartmentalization for Smart Materials, Medical Diagnostics and Cell Therapy
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The organisation of fluids in small compartments is ubiquitous in nature, such as in the cellular composition of all life. This work explores several engineering avenues where microscale fluid compartmentalization can bring novel material properties or novel functionality in life sciences or medicine. 

Here, we introduce four unique compartmentalization methods: 1) 3D fluid self-organisation in microscaffolds (FLUID3EAMS), 2) 2D microcapillary arrays on a dipstick (Digital Dipstick), 3) a sliding microfluidic platform with cross-flow (Slip-X-Chip), and 4) compartmentalization by cutting of soft solid matter (Solidify & Cut). These methods were used in a wide range of applications. 

Within the area of smart materials, we applied FLUID3EAMS to synthesize materials with temperature-tuneable permeability and surface energy and to establish, in a well-controlled fashion, tissue-like materials in the form of 3D droplet interface bilayer networks. Solidify & Cut was used to form soft composites with a new type of magnetic behaviour, rotation-induced ferromagnetism, that allows easy reprogramming of the magnetization of magnetopolymers. 

Within the area of medical diagnostics, we applied Digital Dipstick to perform rapid digital bacterial culture in a dipstick format and obtained clinically relevant diagnostic results on samples from patients with a urinary tract infection. Furthermore, Slip-X-Chip enables particle concentration and washing as new functions in sliding microfluidic platforms, which significantly expands their potential application area. 

Finally, within the area of cell therapy, we explored the microencapsulation of high concentrations of therapeutic cells and presented a novel technique to fabricate core-shell microcapsules by exploiting the superior material properties of spider silk membranes. 

Abstract [sv]

Organisering av vätskor i små fack är allmänt förekommande i nature, t.ex. i den cellulära sammansättningen av allt liv. Det här arbetet utforskar ett flertal ingenjörsmässiga tillvägagångssätt där organisering av vätska på mikroskala kan frambringa nya egenskaper hos material eller uppnå ny funktionalitet i life science eller medicin.

Här introduceras fyra unika sätt att dela upp vätskor: 1) 3-Dimensionell självorganisation av vätskor i mikrostrukturer (FLUID3EAMS), 2) Mikrokapillära 2D-matriser på en mätsticka (Digital Dipstick), 3) en glidande mikrofluidisk platform med tvärflöde (Slip-X-Chip), och 4) uppdelning genom skärande av mjuk solid material (Solidify & Cut). De här metoderna användes i flertalet applikationsområden. 

Inom området smarta material applicerade vi FLUID3EAMS för att syntetisera material med permeabilitet och ytenergi som kunde styras med temperatur och för att etablera, i välkontrollerade former, vävnadslika material i form av ett nätverk av 3-Dimensionella dubbellager av droppgränssnitt. 

Inom området medicinsk diagnostic, applicerade vi Digital Dipstick för att utföra snabb, digital odling av bakteriekulturer i ett mätstickeformat och uppnådde kliniskt relevanta diagnostiska resultat från patienter med urinvägsinfektion. En vidareutveckling av detta koncept, Slip-X-Chip, möjliggör partikelkoncentration och sköljning som tillagda funktioner i glidande mikrofluidiska plattformar, vilket väsentligt utökar deras potentiella användningsområden. 

 Slutligen, inom området cellterapi, utforskade vi mikro-inkapsling av höga koncentrationer av terapeutiska celler och presenterade en ny teknik att framställa core-shell mikrokapslar genom att utnyttja de överlägsna materialegenskaperna hos silkesmembran från spindlar. 

Place, publisher, year, edition, pages
Kungliga Tekniska högskolan, 2022. p. 65
Series
TRITA-EECS-AVL ; 2022:2
Keywords
Microfluidics, microfabrication, compartmentalization, partitioning, droplet microfluidics, self-assembly, 3D microarrays, soft composites, beads, particles, core-shell particle, point-of-care, diagnostics, dipstick, digital bioassays, lab-on-a-chip, urinary tract infection, bacteria detection, E. coli, cell encapsulation, hydrogel, cell therapy, spider silk, magnetic metamaterials., Mikrofluidik, mikrotillverkning, kompartmentalisering, partitionering, droppmikrofluidik, självmontering, 3D-mikromatriser, mjuka kompositer, pärlor, partiklar, kärna-skalpartikel, vårdpunkt, diagnostik, mätsticka, digitala bioanalyser, laboration-a-chip, urinvägsinfektion, bakteriedetektering, E. coli, cellinkapsling, hydrogel, cellterapi, spindelsilke, magnetiska metamaterial.
National Category
Engineering and Technology Biomaterials Science Biomedical Laboratory Science/Technology Composite Science and Engineering Other Electrical Engineering, Electronic Engineering, Information Engineering Medical Biotechnology Nano Technology
Identifiers
urn:nbn:se:kth:diva-307246 (URN)978-91-8040-105-0 (ISBN)
Public defence
2022-02-11, M2, Brinellvägen 64, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20220120

Available from: 2022-01-20 Created: 2022-01-19 Last updated: 2022-09-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopushttps://ieeexplore.ieee.org/document/8870801

Authority records

Iseri, EmreKaya, Keremvan der Wijngaart, Wouter

Search in DiVA

By author/editor
Iseri, EmreKaya, KeremDi Dio, Giacomovan der Wijngaart, Wouter
By organisation
Micro and NanosystemsKTH
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 62 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf