kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Influence of spatially varying thickness on load-bearing capacity of shotcrete
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics. KTH Royal Inst Technol, Dept Civil & Architectural Engn, SE-10044 Stockholm, Sweden..ORCID iD: 0000-0002-9835-7053
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.ORCID iD: 0000-0002-8152-6092
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.ORCID iD: 0000-0001-5372-7519
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Soil and Rock Mechanics.ORCID iD: 0000-0001-9615-4861
2020 (English)In: Tunnelling and Underground Space Technology, ISSN 0886-7798, E-ISSN 1878-4364, Vol. 98, article id 103336Article in journal (Refereed) Published
Abstract [en]

A common approach to verify a shotcrete layer's ability to secure blocks that can exist between rockbolts in a tunnel is to use analytical calculations. For this situation, an attractive approach to account for variability in the shotcrete parameters is to use reliability-based methods. Variability can then be accounted for by assigning suitable probability distributions to all relevant input parameters. Structural safety can be ensured by verifying that the probability of limit exceedance is smaller than an acceptable target probability of failure. However, even though analytical calculations and reliability-based methods can be used to design shotcrete support, one of the commonly made basic assumptions is that the load-bearing capacity of the shotcrete is governed by the spatial average of the input parameters. Thus, the spatial variability of the parameters are neglected. As a result, if the capacity is governed by the lowest value of a certain parameter, this assumption is non-conservative. In this paper, we present a novel approach in which the minimum of either the spatial average of a shotcrete slab of varying thickness, or the spatial average along the periphery of a loose block of that same slab, is used to estimate the load-bearing capacity of the shotcrete in a tunnel. The approach is based on results from numerical simulations of a shotcrete slab that we perform to investigate the effect that a spatially varying thickness has on the flexural load-bearing capacity of the slab. The results from the simulations show that the shotcrete's flexural load-bearing capacity might be overestimated when using the spatial average of shotcrete thickness between four rockbolts in design. Using the presented approach, the spatial variability of shotcrete thickness can be accounted for in practical design of tunnels without complex and time-consuming numerical simulations.

Place, publisher, year, edition, pages
Elsevier, 2020. Vol. 98, article id 103336
Keywords [en]
Rock engineering, Tunnel, Shotcrete, Reliability-based methods
National Category
Civil Engineering
Identifiers
URN: urn:nbn:se:kth:diva-271498DOI: 10.1016/j.tust.2020.103336ISI: 000518873900023Scopus ID: 2-s2.0-85079122118OAI: oai:DiVA.org:kth-271498DiVA, id: diva2:1425784
Note

QC 20200422

Available from: 2020-04-22 Created: 2020-04-22 Last updated: 2023-03-06Bibliographically approved
In thesis
1. Reliability-based design of rock tunnel support
Open this publication in new window or tab >>Reliability-based design of rock tunnel support
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Since 2009, design of rock tunnels can be performed in accordance with the Eurocodes, which allows that different design methodologies are applied, such as design by calculation or design using the observational method. To account for uncertainties in design, the Eurocode states that design by calculation should primarily be performed using the partial factor method or reliability-based methods. The basic principle of both of these methods is that it shall be assured that a structure’s resisting capacity is larger than the load acting on the structure, with sufficiently high probability. Even if this might seem straightforward, the practical application of limit state design to rock tunnel support has only been studied to a limited extent.The overall aim of this project has been to develop reliability-based methods for environmental and economic optimization of rock tunnel support, with a special focus on shotcrete support. To achieve this, this thesis aims to: (1) assess the applicability of the partial factor method and reliability-based methods for design of shotcrete support, exclusively or in combination with the observational method, (2) quantify the magnitude and uncertainty of the shotcrete’s input parameters, and (3) assess the influence from spatial variability on shotcrete’s load-bearing capacity and judge the correctness of the assumption that the load-bearing capacity of the support is governed by the mean values of its input parameters.The thesis shows that the partial factor method is not suitable, and in some cases not applicable, to use in design of rock tunnel support. Instead, the thesis presents a reliability-based design methodology for shotcrete in rock tunnels with respect to loose blocks between rockbolts and a design methodology for shotcrete lining based on a combination of the observational method and reliability-based methods. The presented design methodologies enable optimization of the shotcrete support and shotcrete lining by stringently accounting for uncertainties related to input data throughout the design process. The thesis also discusses the limited knowledge that we as an industry sometimes have in our calculation models and the clarifications that should be made in future revisions of the Eurocode related to target reliability and the definition of failure.

Abstract [sv]

Sedan 2009 kan dimensionering av bergtunnlar utföras i enlighet med Eurokoderna, vilka tillåter att olika dimensioneringsmetoder tillämpas, såsom dimensionering genom beräkning eller dimensionering med observationsmetoden. För att ta hänsyn till osäkerheter föreskriver Eurokoderna att dimensionering genom beräkning primärt skall utföras med hjälp av partialkoefficientmetoden eller tillförlitlighetsbaserade metoder. Grundprincipen i båda dessa metoder är att det skall säkerställas att en konstruktions bärförmåga, med tillräckligt hög sannolikhet, är större än lasten som verkar mot konstruktionen. Även om detta kan förefalla enkelt så har den praktiska användningen av framförallt tillförlitlighetsbaserade metoder inom bergbyggande endast studerats i begränsad utsträckning.Målet med detta projekt har varit att utveckla tillförlitlighetsbaserade metoder för miljömässig och ekonomisk optimering av förstärkning i tunnlar med fokus på sprutbetongförstärkning. För att uppnå detta, syftar denna avhandling till att (1) utvärdera tillämpbarheten av partialkoefficient metoden och tillförlitlighetsbaserade metoder för dimensionering av sprutbetongförstärkning, (2) kvantifiera storleken och osäkerheten i sprutbetongförstärkningens indata parametrar och (3) utvärdera effekten från rumslig spridning på sprutbetongens bärförmåga.Avhandlingen visar att partialkoefficientmetoden inte är lämplig att använda vid dimensionering av förstärkning i tunnlar. En tillförlitlighetsbaserad dimensioneringsmetodik för sprutbetong med avseende på blockutfall mellan bultar samt en dimensioneringsmetodik för tunnel-lining av sprutbetong baserad på observationsmetoden och tillförlitlighetsbaserade metoder har utvecklats inom ramen av denna avhandling. De utvecklade metodikerna möjliggör optimering av förstärkning och tunnel-lining av sprutbetong genom att stringent ta hänsyn till osäkerheter kopplade till indata kontinuerligt genom hela designprocessen. Avhandlingen diskuterar även den begränsade kunskap vi har om våra beräkningsmodeller samt vilka förtydliganden som bör göras i framtida revideringar av Eurokoderna kopplade till riktvärden för kravställda brottsannolikheter och definitionen av brott.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. p. 61
Series
TRITA-ABE-DLT ; 208
Keywords
Rock engineering, reliability-based design, Eurocode 7, observational method, tunnel engineering, Bergmekanik, sannolikhetsbaserad dimensionering, Eurokod 7, observationsmetoden, tunnelbyggnad
National Category
Geotechnical Engineering and Engineering Geology
Research subject
Civil and Architectural Engineering, Soil and Rock Mechanics
Identifiers
urn:nbn:se:kth:diva-272722 (URN)978-91-7873-522-8 (ISBN)
Public defence
2020-05-28, Via Zoom - https://kth-se.zoom.us/j/490988607, Du som saknar dator/datorvana kan kontakta fredrik.johansson@byv.kth.se för information / Use the e-mail address if you need technical assistance, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20200506

Available from: 2020-05-06 Created: 2020-04-27 Last updated: 2025-02-07Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Bjureland, WilliamJohansson, FredrikSpross, JohanLarsson, Stefan

Search in DiVA

By author/editor
Bjureland, WilliamJohansson, FredrikSpross, JohanLarsson, Stefan
By organisation
Soil and Rock Mechanics
In the same journal
Tunnelling and Underground Space Technology
Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 205 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf