kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cascade photon upconversion amplification for selective multispectral narrow-band near-infrared photodetection
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, China.
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, China.
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, China.
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 130012 Changchun, China.
Show others and affiliations
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Facing the fact that selective detection of multiple narrow spectral bands in the near-infrared (NIR) region still poses a fundamental challenge, we have, in this work, developed NIR photodetectors (PDs) using photon upconversion nanocrystals (UCNCs) combined with perovskite films. In order to conquer the relatively high pumping threshold of UCNCs, we designed a novel cascade amplification strategy for upconversion luminescence (UCL) through cascading the superlensing effect of dielectric microlens arrays and the plasmonic effect of gold nanorods, which readily leads to a UCL enhancement by more than four orders of magnitude under weak light irradiation. By accommodating multiple optical active lanthanide ions in a core-shell-shell hierarchical architecture, the developed PDs on top can detect three well-separated narrow bands in the NIR region, i.e., 808, 980, and 1540 nm, respectively. Due to the large UCL enhancement, the obtained PDs demonstrate extremely high responsivity of 30.73, 23.15, 12.20 A/W and detectivity of 5.36, 3.45, 1.91x10^11 Jones for the 808, 980, and 1540 nm light detection, respectively, together with short response times in the range of 80-120 ms. Moreover, we demonstrate for the first time that the response to the excitation modulation frequency of a PD can be employed to discriminate the incident light wavelength. We believe that our work provides a novel insight for developing NIR PDs, and that it can spur the development of other applications using upconversion nanotechnology.

Keywords [en]
upconversion nanoparticles, cascade amplification, multi-wavelength selective photodetection, dielectric superlensing effect, localized surface plasmon resonance, excitation modulation, frequency response
National Category
Nano Technology
Research subject
Materials Science and Engineering; Physics, Optics and Photonics
Identifiers
URN: urn:nbn:se:kth:diva-273152OAI: oai:DiVA.org:kth-273152DiVA, id: diva2:1429049
Note

QC 20200603

Available from: 2020-05-07 Created: 2020-05-07 Last updated: 2022-06-26Bibliographically approved
In thesis
1. Studies of optical properties of lanthanide upconversion nanoparticles for emerging applications.
Open this publication in new window or tab >>Studies of optical properties of lanthanide upconversion nanoparticles for emerging applications.
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

YTTERBY, a small village very close to Stockholm where I live, is the place in the world which has lent its name to the largest number of elements in the periodic table, namely four - YTTRIUM, YTTERBIUM, ERBIUM and TERBIUM. Three more lanthanide elements were discovered from the now empty quarry located in this village. By the time of their discoveries in the 19th century little could be known about their fantastic properties, the versatility of their use and functionality in what we now call nanotechnology. This is a circumstance that motivated me to rather recently enter lanthanide research, in particular studies of their outstanding optical properties for the purpose of information technology and energy harvesting.

So far, upconversion nanoparticles (UCNPs) have been much explored as unique spectral converters for various applications, like biotechnology, information technology and photovoltaic devices due to properties like sharp emission profiles, low autofluorescence and large anti-Stoke shifts. Still, there is much to explore and to understand in order to fully utilize the very unique properties of UCNPs. The kinetic dynamics of the upconversion process is one such aspect that is not well understood, and a deeper understanding of the kinetic dynamics of lanthanide upconversion systems could thus broaden their applications. Therefore, the work of this thesis is focused on investigating the kinetic dynamics of upconversion processes mainly based on systems with NaYF4 as host material, and Yb3+/Er3+ or Yb3+/Tm3+ embedded as sensitizer/activator. Through rate equation models, the kinetic dynamics of upconversion are comparatively investigated with numerical simulations and analytical derivation. The temporal response regarding upconverted luminescence and quantum yield power density dependence, excitation duration response and excitation frequency response of the upconversion systems are investigated and the corresponding applications for multicolor imaging, optical encoding, photovoltaics, IR photodetectors are explored and analyzed in the thesis, taking advantage of the kinetic properties.

Abstract [sv]

YTTERBY, en liten by nära Stockholm där jag bor, är den plats i världen som har lånat sitt namn till det högsta antalet element i det periodiska systemet, nämligen fyra - YTTRIUM, YTTERBIUM, ERBIUM och TERBIUM. Ytterligare tre lantanidelement upptäcktes från det nu tomma stenbrottet som ligger i denna by. Vid deras upptäckter på 1800-talet kunde man inte ana deras fantastiska egenskaper, mångsidigheten i deras användning och deras funktionalitet i det vi nu kallar nanoteknologi. Detta är en omständighet som motiverade mig ganska nyligen att intressera mig för lantanidforskning, i synnerhet studier av deras enastående optiska egenskaper och deras energitillämpningar och användning inom informationsteknik.

Hittills har uppkonverterande nanopartiklar (UCNPs) utforskats mycket som unika spektralkonverterare för olika applikationer, som bioteknik, informationsteknologi och fotovoltaiska enheter på grund deras egenskaper som skarpa emissions profiler, låg autofluorescens och stora anti-Stoke skift. Det finns fortfarande mycket att utforska och förstå för att utnyttja de mycket unika egenskaperna hos dessa partiklar. Den kinetiska dynamiken i upkonverteringsprocessen är en sådan aspekt som inte är väl undersökt ännu, och en djupare förståelse av den kinetiska dynamiken i uppkonverterande lantanid system kan bredda deras tillämpningar. Därför har jag fokuserat arbetet med den här avhandlingen på att undersöka den kinetiska dynamiken i upkonverterings processen huvudsakligen baserat på system med NaYF4 som värdmaterial och Yb3+/Er3+ eller Yb3+/Tm3+ inbäddat som sensibilisator/aktivator. Genom simuleringar av ekvationsmodeller har jag undersökt den kinetiska dynamiken i uppkonversionen jämförande numerisk simulering och analytisk härledning. Det temporära svaret med avseende på uppkonverterad luminescens, det s.k. täthetsberoendet av kvantutbytet och excitation frekvens responsen för olika upkonversionssystem har studerats. Motsvarande tillämpningar för flerfärgs avbildning, optisk kodning, fotovoltaik och IR fotodetektorer undersöks och analyseras i avhandlingen, med speciell fokus på de kinetiska egenskaperna.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. p. 73
Series
TRITA-CBH-FOU ; 2020:18
Keywords
Upconversion nanoparticles, solar cells sensitization, near infrared photodetector, multiplex imaging, optical encoding, information technology, bioimaging, rate equation models
National Category
Nano Technology
Research subject
Theoretical Chemistry and Biology
Identifiers
urn:nbn:se:kth:diva-273038 (URN)978-91-7873-500-6 (ISBN)
Public defence
2020-06-04, https://kth-se.zoom.us/webinar/register/WN_E0ALwYOFS-mP-vAFhp2QQw, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2020-05-14

Available from: 2020-05-14 Created: 2020-05-07 Last updated: 2022-09-19Bibliographically approved

Open Access in DiVA

No full text in DiVA

Search in DiVA

By author/editor
Liu, QingyunÅgren, HansLiu, Haichun
By organisation
Theoretical Chemistry and Biology
Nano Technology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 270 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf