kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The microcircuits of striatum in silico
KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Electrical Engineering and Computer Science (EECS).
KTH, School of Electrical Engineering and Computer Science (EECS). KTH, Centres, Science for Life Laboratory, SciLifeLab. Karolinska Inst, Dept Neurosci, SE-17165 Stockholm, Sweden..
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST). KTH, Centres, Science for Life Laboratory, SciLifeLab.
Karolinska Inst, Dept Neurosci, SE-17165 Stockholm, Sweden..
Show others and affiliations
2020 (English)In: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 117, no 17, p. 9554-9565Article in journal (Refereed) Published
Abstract [en]

The basal ganglia play an important role in decision making and selection of action primarily based on input from cortex, thalamus, and the dopamine system. Their main input structure, striatum, is central to this process. It consists of two types of projection neurons, together representing 95% of the neurons, and 5% of interneurons, among which are the cholinergic, fast-spiking, and low threshold-spiking subtypes. The membrane properties, somadendritic shape, and intrastriatal and extrastriatal synaptic interactions of these neurons are quite well described in the mouse, and therefore they can be simulated in sufficient detail to capture their intrinsic properties, as well as the connectivity. We focus on simulation at the striatal cellular/microcircuit level, in which the molecular/subcellular and systems levels meet. We present a nearly full-scale model of the mouse striatum using available data on synaptic connectivity, cellular morphology, and electrophysiological properties to create a microcircuit mimicking the real network. A striatal volume is populated with reconstructed neuronal morphologies with appropriate cell densities, and then we connect neurons together based on appositions between neurites as possible synapses and constrain them further with available connectivity data. Moreover, we simulate a subset of the striatum involving 10,000 neurons, with input from cortex, thalamus, and the dopamine system, as a proof of principle. Simulation at this biological scale should serve as an invaluable tool to understand the mode of operation of this complex structure. This platform will be updated with new data and expanded to simulate the entire striatum.

Place, publisher, year, edition, pages
Proceedings of the National Academy of Sciences , 2020. Vol. 117, no 17, p. 9554-9565
Keywords [en]
modeling, basal ganglia, network, compartmental models, computational analysis
National Category
Computer and Information Sciences
Identifiers
URN: urn:nbn:se:kth:diva-273500DOI: 10.1073/pnas.2000671117ISI: 000530099500059PubMedID: 32321828Scopus ID: 2-s2.0-85084114704OAI: oai:DiVA.org:kth-273500DiVA, id: diva2:1431750
Funder
Science for Life Laboratory - a national resource center for high-throughput molecular bioscience
Note

QC 20200525

Available from: 2020-05-25 Created: 2020-05-25 Last updated: 2023-11-21Bibliographically approved
In thesis
1. Computational Modelling and Topological Analysis of the striatal microcircuitry in health and Parkinson's disease
Open this publication in new window or tab >>Computational Modelling and Topological Analysis of the striatal microcircuitry in health and Parkinson's disease
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The basal ganglia are evolutionary conserved nuclei located at the base of the forebrain. They are a central hub in the control of motion and their dysfunctions lead to a variety of movement related disorders, including Parkinson's disease (PD).

The largest nucleus and main input stage of the basal ganglia is the striatum. It receives excitatory glutamatergic projections primarily from cortex and thalamus as well as modulatory dopaminergic input from the substantia nigra pars compacta and the ventral tegmental area. Striatal output is mediated by the direct and indirect pathway striatal projection neurons (dSPNs and iSPNs, respectively). In rodents, they account for 95% of the neurons, while the remaining 5% are interneurons, which do not project outside the striatum.

The aim of this thesis is to develop an in silico striatal microcircuit in health and PD, and to compare these two networks using electrophysiological simulations and topological analysis.

The neuron types included are the striatal projection neurons (dSPN and iSPN) and three of the main interneuron classes: FS, LTS and ChIN. Their multi-compartmental models are based on detailed morphological reconstructions, ion channels expression and electrophysiological ex vivo rodents experimental data from control and PD brains.

In Paper A, a comparison between two methods commonly used to model ion channels was presented.

In Paper B, the healthy striatal microcircuit was created. We presented a modelling framework called Snudda. It enables the creation of large-scale networks by: placing neurons using appropriate density, predicting synaptic connectivity based on touch detection and a set of pruning rules, setting up external input and modulation, and finally running the simulations. It is written in Python and uses the NEURON simulator.

In Paper C, we conducted a computational study on the reciprocal interaction between ChIN and LTS interneurons. Specifically, we simulate the inhibition of LTS via muscarinic M4 receptors following acetylcholine release from ChIN as well as the prolonged depolarization of ChIN subsequent to the release of nitric oxide from LTS.

In Paper D, we developed a pipeline to model the NMDA and AMPA postsynaptic currents in striatal neurons following glutamate release from cortex and thalamus. This was done to improve the accuracy of the existing synaptic models.

In Paper E, the PD striatal microcircuit was created. First, we modelled the morphological changes in both SPNs and FS as well as the electrophysiological alterations in SPNs. Then we predicted and quantified how the intrastriatal connectivity is altered using anatomically constrained synapse placement and topological analysis of the resulting network. Finally we investigated how the effective glutamatergic drive to SPNs is modified.

Overall, in this thesis we further advanced the development of the simulation framework for the study of the basal ganglia function and initiated systematic model-based large-scale computational analysis of their abnormal PD state.

Abstract [sv]

Basala ganglierna, som är placerade vid basen av framhjärnan, är evolutionärt konserverade kärnor. De utgör ett centralt nav för kontrollen av motoriken, och dysfunktioner i basala ganglierna leder till en mängd olika rörelserelaterade störningar, inklusive Parkinsons sjukdom (PD).Den största kärnan, är den del av basala ganglierna och som fungerar som det huvudsakliga input steget, är striatum. Den tar emot excitatoriska glutamaterga projektioner främst från cortex och thalamus såväl som modulerande dopaminerga input från substantia nigra pars compacta och det ventrala tegmentumområ det. Striatum projicerar till andra delar av basala ganglierna via de direkta och indirekta striatala projektionsneuronerna (dSPNs respektive iSPNs). De utaör 95% av neuronerna hos möss, medan de återstå ende 5% är interneuroner, som inte projicerar utanför striatum.

Syftet med denna avhandling är att bygga en in silico modell av det lokala striatala neuronnätverket som kan användas för att förstå både det friska nätverket och hur det förändras vid PD. Dessa nätverksmodeller jämförs sedan med hjälp av biofysikaliskt detaljerade simuleringar samt genom användandet av topologisk analys.

De neurontyper som ingår i modellen är de striatala projektionsneuronerna (dSPN och iSPN) och tre av de huvudsakliga interneurontyperna: FS, LTS och ChIN. Multi-kompartmentmodeller av dessa neurontyper baseras på detaljerade morfologiska rekonstruktioner av neuron,  genuttryck av jonkanaler samt elektrofysiologiska ex vivo experimentella data från möss som representerar kontroll- och PD-hjärnor.

I artikel A presenterades en jämförelse mellan två metoder som vanligtvis används för att modellera jonkanaler.

I artikel B byggde vi en modell av det lokala striatala neuronnätverket. Vi beskriver ett ramverk som heter Snudda för att bygga nätverket. Det möjliggör skapandet av storskaliga modellnätverk genom att: först placera neuroner med den densitet som uppmätts; sedan prediceras synapsernas placering baserat på detektion av var axon och dendriter är tillräckligt nära varann, och i detta steg används också en uppsättning s.k. pruningsregler; därefter definieras hur nätverksmodellen skall aktiveras; och slutligen körs simuleringarna. Koden är skriven i Python och använder NEURON-simulatorn.

I artikel C genomförde vi en simuleringsstudie av den reciproka interaktionen mellan ChIN och LTS interneuroner. Specifikt simulerar vi både hämningen av LTS via muskarina M4-receptorer, aktiverade av acetylkolinfrisättningen från ChIN, samt undersöker även den förlängda depolariseringen av ChIN som ses efter frisättning av kväveoxid från LTS.

I artikel D utvecklade vi en pipeline för att modellera NMDA- och AMPA-postsynaptiska strömmar i striatala neuroner efter glutamatfrisättning från cortex och thalamus. Målet med denna studie var att förbättra noggrannheten hos de synaptiska modeller som ofta använts i liknande studier.

I artikel E byggdes en modell av hur det lokala striatala nätverket förändras pga PD. Först modellerade vi de morfologiska förändringarna i både SPN och FS samt de elektrofysiologiska förändringarna i SPN. Sedan predicerade vi samt kvantifierade vi hur de intrastriatala synapsernas antal förändras som följd av de morfologiska förändringar som ses vid PD. För att kvantifiera våra resultat användes topologisk analys av det resulterande nätverket. Slutligen undersökte vi hur den effektiva glutamaterga aktiveringen av SPN modifieras vid PD.

Sammantaget har arbetena i denna avhandling utvecklat både ett modelleringsramverk för studier av basala gangliernas funktion samt initierat en systematisk modellbaserad storskalig beräkningsanalys av förändringar som ses vid PD.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2023. p. 79
Series
TRITA-EECS-AVL ; 2023:82
National Category
Computer Sciences Bioinformatics (Computational Biology)
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-339909 (URN)978-91-8040-761-8 (ISBN)
Public defence
2023-12-11, D37, Lindstedtsvägen 9, floor 3,https://kth-se.zoom.us/j/64099915499, Stockholm, 13:30
Opponent
Supervisors
Note

QC 20231121

Available from: 2023-11-21 Created: 2023-11-21 Last updated: 2023-12-08Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Hjorth, J. J. JohannesKozlov, AlexanderCarannante, IlariaHellgren Kotaleski, Jeanette

Search in DiVA

By author/editor
Hjorth, J. J. JohannesKozlov, AlexanderCarannante, IlariaTokarska, AnnaDorst, Matthijs C.Hellgren Kotaleski, Jeanette
By organisation
Science for Life Laboratory, SciLifeLabSchool of Electrical Engineering and Computer Science (EECS)Computational Science and Technology (CST)
In the same journal
Proceedings of the National Academy of Sciences of the United States of America
Computer and Information Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 155 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf