kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Impact of the surgical lamp design on the airflow and contamination level in an operating room : a numerical assessment
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Sustainable Buildings.ORCID iD: 0000-0001-7032-3049
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Sustainable Buildings. Norconsult AS, Norway.
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Sustainable Buildings.ORCID iD: 0000-0002-9361-1796
2020 (English)In: 16th Conference of the International Society of Indoor Air Quality and Climate: Creative and Smart Solutions for Better Built Environments, Indoor Air 2020, 1 November 2020, 2020Conference paper, Published paper (Refereed)
Abstract [en]

Increasing antibiotic resistance in humans during the last decades converts the surgical site infections as one of the main concerns in health-care system. The ventilation systems are considered as the main tool to provide clean air in operating rooms. Although laminar air flow ventilation systems are among the most common system for operating rooms, the number of surgical staff, surgical lamps and door openings can affect the performance of the ventilation system.The main goal of this study is to numerically investigate whether a fan-mounted surgical lamp can reduce the level of bacteria carrying particles within the surgical zone of an operating room with the laminar airflow ventilation system. In this regards, two types of surgical lamps were considered: a closed-shape lamp and a fan-mounted lamp. Computational Fluid Dynamics simulations were applied to map the airflow patterns and bacteria carrying particles. The simulated results showed that the lamp with fan resolved the problem of the low-velocity area under the closed-shape lamp and the contamination level reduced successfully to an acceptable level.

Place, publisher, year, edition, pages
2020.
Keywords [en]
Laminar airflow, Surgical lamp, Bacteria carrying particles, Computational fluid dynamics simulation
National Category
Other Civil Engineering
Research subject
Civil and Architectural Engineering, Fluid and Climate Theory
Identifiers
URN: urn:nbn:se:kth:diva-284541Scopus ID: 2-s2.0-85101595010OAI: oai:DiVA.org:kth-284541DiVA, id: diva2:1484174
Conference
16th Conference of the International Society of Indoor Air Quality & Climate 2020, Seoul, South Korea, 16th Conference of the International Society of Indoor Air Quality & Climate 2020, Seoul, South Korea
Funder
Swedish Research Council Formas, 2017-01088Swedish National Infrastructure for Computing (SNIC), 2016 – 07213
Note

QC 20210628

Available from: 2020-10-28 Created: 2020-10-28 Last updated: 2022-06-25Bibliographically approved
In thesis
1. A new generation of hospital operating room ventilation
Open this publication in new window or tab >>A new generation of hospital operating room ventilation
2020 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Surgical site infection is responsible for 38 percent of reported infections after surgery. This infection increases mortality and treatment costs, and prolongs the hospitalization of patients. Bacteria-carrying particles are the main cause of surgical site infection and one of the main sources of these particles is skin fragments released from the surgical personnel during an ongoing surgery. Ventilation systems reduce the concentration of bacteria-carrying particles by supplying clean air in the operating room. The performance of operating room ventilation systems is affected by internal disruptions such as medical equipment, surgical lamps, number of staff and their behaviour during the surgery.

Using computational fluid dynamics, this thesis investigates the airflow behaviour and distribution of the contamination in the operating room under the presence of various internal disruptions. In this regard, three common ventilation systems are considered: laminar airflow, turbulent mixing and temperature-controlled airflow ventilations. This study tries to overcome the weaknesses of the ventilation systems by providing sustainable solutions and continuously being in contact with design companies.

It is common to use warming blankets to prevent reduction in the core body temperature of the patient during major surgeries. However, there is a major concern that these blankets disrupt the supplied airflow, which results in rising contaminant concentration. Most of the studies about warming blankets are clinical works and it is still not clear whether or not these blankets should be used. The results of the present study show that using warming blankets had no impact on increase of contamination level at the surgical zone. However, one common type of warming blanket – a forced-air warming blanket – can considerably increase the concentration of bacteria-carrying particles at the wound area if it becomes contaminated.

The simulated results of the airflow field and particle tracking showed that the laminar airflow ventilation system was disturbed more easily by the local heat loads than overall heat loads in the operating room.

Surgical lamps are considered as an obstacle in the supplied airflow path. These lamps create a stagnant area above the operating table and increase the contamination level. In this regard, a novel design of surgical lamp, a fan-mounted surgical lamp, was introduced to operating rooms.This device was used in the operating rooms equipped with laminar airflow and mixing ventilation system. The simulated results revealed that this lamp significantly reduced the contamination level at the operating table.

Visualization techniques were adopted to teach and improve the understanding of surgical personnel about transmission of contaminated particles in operating rooms. Here, a virtual and augmented reality interface was used to visualize the impact of differences in ventilation principle, surgical staff constellation and work practice.

Abstract [sv]

Infektioner relaterade till kirurgiskt ingrepp utgör 38 % av rapporterade infektioner efter operation. Dessa infektioner ökar dödligheten och behandlingskostnaderna samt förlänger patienternas sjukhusvistelse. Bakteriebärande partiklar är den främsta orsaken till infektion vid kirurgi. Huvudkällan till dessa partiklar är hudfragment som frigörs från kirurgisk personal under en pågående operation. Genom att tillföra ren luft via ventilationssystemet kan koncentrationen av baktebärande partiklar i operationssalen minskas. Ventilationssystemets förmåga att ventilera salen påverkas av föremål som stör luftströmmen, som exempel medicinsk utrustning, kirurgiska lampor samt av närvarande personal och deras beteende under operationen.

Med avancerade numeriska strömningsberäkningar undersöks i denna avhandling luftflöden och fördelningen av föroreningar i operationssalen under inverkan av sådana störningar. Tre olika ventilationssystem inkluderas. Ett för laminärt luftflöde, ett för turbulent omblandning och ett för temperaturreglerad luftströmning. I studien kartläggs ventilationssystemens funktion och relevansen prövas i ett kontinuerligt samarbete med tillverkande industri.

Användning av värmefiltar förekommer under större operationer för att hålla patientens kroppstemperatur stabil. Det finns emellertid en stor oro för att dessa filtar stör det tillförda luftflödet och därmed ökar föroreningsnivån. En vanlig typ av värmefilt med forcerad varmluft kan om den är förorenad avsevärt öka koncentrationen av bakteriebärande partiklar i sårområdet. De flesta undersökningar om värmande filtar är kliniska studier och det är fortfarande inte helt klarlagt i vilken mån och hur dessa filtar skall användas. Denna studie visar emellertid att användning av värmefiltar inte påverkar föroreningsnivån i den kirurgiska zonen. Gjorda datorsimuleringar av luftflödesfältet och partikelspårning visar att det laminära ventilationsflödet lättare störs av lokala värmebelastningarna än av generella värmebelastningar i operationssalen.

Kirurgiska lampor betraktas som hinder i en planerad luftflödesväg. Lampor kan skapa en stillastående luftmassa ovanför operationsbordet och därmed öka föroreningsnivån. För detta introduceras en ny design av kirurgisk lampa, en fläktmonterad kirurgisk lampa för operationsrum, utrustade med laminärt luftflöde och omblandning. Simulerade resultat visar att denna nya kirurgiska lampa signifikant minskar föroreningsnivån vid operationsbordet.

Visualiseringsteknik användes i denna studie för att förbättra förståelsen hos kirurgisk personal om hur förorenade partiklar kan spridas i operationssalen. Med ett virtuellt och förstärkt gränssnitt visualiserades föroreningshalter i rumsluften då olika typer av ventilationssystem användes. Visualiseringen visar också hur kirurgigruppens storlek och arbetsställning under operation påverkar spridningen av föroreningar.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. p. 35
Series
TRITA-ABE-DLT ; 2032
Keywords
Ventilation systems, bacteria-carrying particles, airflow behaviour, operating room, computational fluid dynamics, surgical site infection, Ventilationssystem, bakteriebärande partiklar, luftflödesbeteende, operationsrum, numerisk strömningsmekanik, kirurgirelaterad infektion
National Category
Other Civil Engineering
Research subject
Civil and Architectural Engineering, Fluid and Climate Theory
Identifiers
urn:nbn:se:kth:diva-284542 (URN)978-91-7873-676-8 (ISBN)
Presentation
2020-11-26, Anmälan / Registration: https://kth-se.zoom.us/webinar/register/WN_XmcrRmGdSfi8I7i1Nzs1JQ, Du som saknar dator/datorvana kan kontakta Sasan Sadrizadeh ssad@kth.se / Use the e-mail address if you need technical assistance, Stockholm (English), Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council Formas, 2017- 01088Swedish National Infrastructure for Computing (SNIC), 2016 – 07213
Note

QC 20201103

Available from: 2020-11-03 Created: 2020-10-28 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Authority records

Sadeghian, ParastooLind, Merethe CecilieSadrizadeh, Sasan

Search in DiVA

By author/editor
Sadeghian, ParastooLind, Merethe CecilieSadrizadeh, Sasan
By organisation
Sustainable Buildings
Other Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 315 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf