kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evolutionary Materialism: Towards a Theory of Anticipatory Adaptive Assemblages
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials. (EnWoBio)ORCID iD: 0000-0002-2034-1553
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis is an investigation into how meta-heuristic multi-objective optimisation processes (genetic algorithms driven by evolutionary solvers) can bring about materials-related advantages in architectural performance. It redefines the architect’s and engineer’s role from being designers of a singular space or structure to being designers of entire species of spaces, and discusses a particular method – anticipatory adaptive assemblages (AAA) – that allows such processes to produce many generations of design iterations that eventually yield individuals optimised for a set of predefined objectives. This includes in particular the optimisation of building materials, with a certain focus on timber structures.

The thesis provides a theoretical foundation (assemblage theory) that connects an ontology, a methodology, an epistemology, and an axiology to the computational operations used, elevating the domain beyond simplistic notions of parametricism. It leverages contemporary generative design methods to introduce a range of novel concepts and tools such as auxiliary loads, material phase transition (MPT) diagrams, generative life cycle assessments (GLCA), parametric epistemic things (PET), presilience, and postponism. Finally, it provides a case study that shows how this assortment of contrivances, and AAA theory at large, can be used not just for theoretical musings, but to produce actual architectural schemes based on more precise data analyses than is typically the case in today’s built environment.

A concluding discussion establishes that the use of more advanced and complex optimisation strategies is not just a possibility but a necessary obligation for an architecture, engineering, and construction (AEC) industry that – if the manufacturing of building materials are added to the construction and operation of buildings – is responsible for between 35% and 40% of both global final energy use and worldwide energy-related CO2 emissions. Claiming that our knowledge of materials, including the auxiliary loads that they carry (such as their global warming potential) can be used to design and engineer architectural assemblages capable of replacing energy-consuming with energy-producing buildings, it suggests that Le Corbusier’s famous dictum that buildings are ‘machines for living in’ should be replaced with the notion that all buildings are potential power plants for living in. Risks associated with the development of AAAs are discussed, and future studies proposed.

Abstract [sv]

Den här avhandlingen undersöker hur meta-heuristiska flermålsoptimeringar (genetiska algoritmer drivna av evolutionära lösningsmotorer) kan ge materialbaserade fördelar med avseende på arkitektonisk prestanda. Den omdefinierar arkitektens och ingenjörens uppgik från gestaltningen av enskilda rumsligheter eller strukturer till formgivningen av hela arter av former, och diskuterar en speciell metod – anteciperande adaptiva arrangemang (AAA) – som tillåter sådana processer att producera många generationer av designförslag vilka i slutänden genererar individer som optimerats för en rad på förhand bestämda målbilder. Särskild vikt läggs vid optimeringen av byggnadsmaterial, med ett visst fokus på trästrukturer.

Avhandlingen framlägger en teoretisk grund (assemblage-teori) som knyter en ontologi, metodologi, epistemologi och axiologi till de datorbaserade operationer som används, vilket vidgar domänen bortom simpel parametricism. Den använder samtida generativa designmetoder för al introducera en samling nya koncept och verktyg som tilläggslaster, materialbaserade fasförändringar (MPT), generativa livscykelanalyser (GLCA), parametriska epistemiska ting (PET), presiliens och postponism. En avslutande fältstudie visar hur sådana mekanismer tillsammans med AAA-teorin som helhet kan användas inte bara som ett teoretiskt verktyg utan även för att producera faktiska arkitekturprojekt baserade på en mer precis analys av data än gestaltningen av vår bebyggda miljö normalt sett använder.

Diskussionen visar att användandet av mer avancerade och komplexa optimeringsstrategier inte bara är en möjlighet utan el nödvändigt åtagande för en arkitektur-, ingenjörs- och byggindustri som – om produktionen av byggnadsmaterial adderas till konstruktionen och driken av våra byggnader – ansvarar för mellan 35% och 40% av såväl den globala energiåtgången som världens energirelaterade utsläpp av CO2. En argumentation för att vår kunskap om material, inklusive de tilläggslaster de medför (som exempelvis deras GWPvärden), kan användas konstruktivt för att designa arkitektoniska arrangemang med potential att byta ut energikonsumerande mot energiproducerande byggnader leder till insikten att det berömda Le Corbusier-citatet om att byggnader är “maskiner al bo i” borde ersättas av idén att alla byggnader är potentiella beboeliga kraftverk. Risker associerade med utvecklingen av AAA diskuteras, och framtida studier föreslås.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. , p. 204
Series
TRITA-ABE-DLT ; 2026
Keywords [en]
Building materials, multi-objective optimisation, genetic algorithms, evolutionary architecture, material phase transitions, generative LCA, parametric epistemic things, presilience, postponism, anticipation, adaptation, simulation, Grasshopper
Keywords [sv]
Byggnadsmaterial, flermålsop2mering, gene2ska algoritmer, evolu2onär arkitektur, materialbaserade fasövergångar, genera2v LCA, parametriska epistemiska 2ng, presiliens, postponism, antecipa2on, adap2on, simulering, Grasshopper
National Category
Engineering and Technology
Research subject
Civil and Architectural Engineering, Building Materials
Identifiers
URN: urn:nbn:se:kth:diva-285511ISBN: 978-91-7873-656-0 (print)OAI: oai:DiVA.org:kth-285511DiVA, id: diva2:1498762
Public defence
2020-11-26, Videolänksmöte med Zoom https://kth-se.zoom.us/j/62383669287, Du som saknar dator/datorvana kan kontakta Tom Thöyrä thoyra@kth.se / Use the e-mail address if you need technical assistanc, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
Swedish Research Council Formas, EnWoBio 2014-172
Note

QC 20201105

Available from: 2020-11-05 Created: 2020-11-05 Last updated: 2022-06-25Bibliographically approved
List of papers
1. Conflict and Compromise in multi-storey timber architecture
Open this publication in new window or tab >>Conflict and Compromise in multi-storey timber architecture
2015 (English)In: arq Architecture research quarterly, ISSN 1359-1355, E-ISSN 1474-0516, Vol. 19, no 3, p. 283-294Article in journal, Editorial material (Refereed) Published
Place, publisher, year, edition, pages
Cambridge: Cambridge University Press, 2015
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-285509 (URN)
Note

QC 20201124

Available from: 2020-11-05 Created: 2020-11-05 Last updated: 2022-06-25Bibliographically approved
2. Teleodynamic timber façades
Open this publication in new window or tab >>Teleodynamic timber façades
2018 (English)In: Frontiers in Built Environment, E-ISSN 2297-3362, Vol. 4, article id 37Article in journal (Refereed) Published
Abstract [en]

This paper investigates ways in which weathering-related site conditions can be allowed to inform the design process in order to improve a building's geometry and performance. Providing a building design with the capacity to remember past experiences and anticipate future events can provide substantial gains to the architectural configuration and engineering of a timber façade. A new theory of architecture is outlined based on recent “teleodynamic” theories—a hypothesis about the way far-from-equilibrium systems interact and combine to produce emergent patterns. The proposed explanation considers nested levels of thermodynamic systems applied to an architectural context: “homeodynamic” operations that involve equilibration and dissipation of constraint combine to produce self-organising “morphodynamic” procedures that amplify and regularise site-specific constraining data streams. A teleodynamic design reconstitutes itself by combining morphodynamic processes so as to optimise its relationship to the past, present, and future. A novel teleodynamic design tool called Contextual Optimisation Workspace (COW) is assembled within the Grasshopper visual programming environment. The tool is used to carry out four experiments that combine to produce the teleodynamic design of an urban wooden façade, exemplifying an alternative framework for the design of wood-based structures. The first experiment investigates a variegated grid combining two distinct subdivision methods (an orthogonal grid and a Voronoi tessellation), transmuting one system into another. The second and third experiments focus on durability aspects of a wooden façade and devise strategies for how the effects of photochemical degradation and wetting due to driving rain might be minimised using the COW tool. The fourth experiment optimises the building for daylight based on an illuminance simulation. Using simulation and anticipation to add the advantages of site- and time-specific data streams as a design strategy can effectively suspend an algorithm-driven design iteration in time and space in order to allow it to be parametrically influenced by past or future events such as unique site and project conditions. The COW tool can be used to produce such teleodynamic designs.

Place, publisher, year, edition, pages
Frontiers Media S.A., 2018
Keywords
EnWoBio Pavilion, Façade, Multiple-objective optimisation, Preservation-treated wood, Teleodynamic architecture, Timber, Wooden structures
National Category
Civil Engineering
Identifiers
urn:nbn:se:kth:diva-252263 (URN)10.3389/fbuil.2018.00037 (DOI)000559209200001 ()2-s2.0-85064649322 (Scopus ID)
Note

QC20190607

Available from: 2019-06-07 Created: 2019-06-07 Last updated: 2022-06-26Bibliographically approved
3. Contextual Engineering of Materials: Optimisation of a Wood/Glass Wall Based On Weighted Objectives
Open this publication in new window or tab >>Contextual Engineering of Materials: Optimisation of a Wood/Glass Wall Based On Weighted Objectives
(English)In: International Wood Products Journal, ISSN 2042-6445, E-ISSN 2042-6453Article in journal, Editorial material (Refereed) Accepted
Abstract [en]

This paper challenges an asserted artificial separation between architecture, engineering, and material design. Novel protocols for mass-customised building materials could make each material entity perform optimally at its given position within a geometry. The number of evaluated materials in an architectural surface should be expanded to become equal to its number of parts. This number should in turn be maximised given other constraints and objectives. The built environment’s restricted material palette provides a limited space of possible combinations of material properties. Evolutionary design procedures could expand this conservative range of materials to achieve additional performance targets. Contextual Optimisation Workspace (COW) is a design tool that promotes such novel processes. Fusing multiple-objective optimisation (MOO) strategies with genetic algorithms, the system allows for analytical comparisons between conflicting aspects of a design. An experiment is conducted to investigate and develop two specific parts of the system’s anatomy. New components add weights to objectives while punishing less favourable designs. The components guide the relative positioning of wood products within a single wall of an architectural structure, to achieve optimal performance given predefined targets. A path towards a “contextual materials engineering technology” is discussed, and suggestions for future studies provided.

Keywords
COW, multiple-objective optimisation, timber structures, wood, architecture, materials science, evolutionary algorithms, façade design, Grasshopper, weighting
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-285499 (URN)
Funder
Swedish Research Council Formas, EnWoBio 2014-172
Note

QC 20201124

Available from: 2020-11-05 Created: 2020-11-05 Last updated: 2022-06-25Bibliographically approved
4. Novel Processes for Architectural Optimisation of Building Materials Performance: Introducing Material Phase Transitions and Generative Life Cycle Assessments
Open this publication in new window or tab >>Novel Processes for Architectural Optimisation of Building Materials Performance: Introducing Material Phase Transitions and Generative Life Cycle Assessments
Show others...
(English)In: Article in journal (Refereed) Submitted
Abstract [en]

Conventional phase diagrams plot differences in properties (e.g. volume) of a medium generated by changes in external conditions (e.g. temperature and/or pressure). This paper discusses how the logic of such diagrams can be applied to produce a new type of surface plot, material phase transition (MPT) diagrams, that chart not the conditions for chemical equilibrium but the relative benefits of a particular material system given a set of predefined objectives and a virtual search space of design solutions. Such diagrams can form an integral part of parametric design processes that use ‘auxiliary loads’ (e.g. LCA values) as variables to generate design iterations. A Grasshopper user object is created and used to design a box beam that yields a set of auxiliary loads charts and MPT diagrams. The anatomy of MPT diagrams is described, and areas for future studies discussed.

Keywords
Material phase transitions (MPT), life cycle assessment (LCA), generative LCA (GLCA), multi-objective optimisation, auxiliary loads, architecture, engineering, building materials
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-285502 (URN)
Funder
Swedish Research Council Formas, EnWoBio 2014-172
Note

QC 20201124

Available from: 2020-11-05 Created: 2020-11-05 Last updated: 2023-12-07Bibliographically approved
5. Sliding Sidewinders: Early-Stage Design of an Anticipatory Adaptive Assemblage
Open this publication in new window or tab >>Sliding Sidewinders: Early-Stage Design of an Anticipatory Adaptive Assemblage
Show others...
(English)In: Article in journal, Editorial material (Refereed) Submitted
Abstract [en]

This quantitative/qualitative evaluation of meta-heuristic design processes being implemented in a real-life architecture project introduces the theoretical concept of anticipatory adaptive assemblages (AAA) and reports on tactics that were used to reduce the ‘curse of dimensionality’ associated with the mechanisms that produce such assemblages. It describes strategies to adopt ‘presilient’ methods to constrain a model’s design space before any evolutionary solving occurs, leverage the advantage in fenestration performance presumed to arise from explorations of non-periodic tessellations of the plane, and use benchmark models to optimise some material aspects of wall sections. These tactics all support a materiality-based approach to designing architecture using genetic algorithms. The experiments were designed in an attempt to begin to close the knowledge gap between on the one hand the existing praxis of LCA-based analyses, on the other simulations that use material properties to directly inform geometries associated with particular combinations of (for instance) site, weather, and material data. The hypothesis is that AAA’s can become an effective framework for design-based adaptation to site conditions and mitigation of climate change. The objectives of the study are a) to implicitly and qualitatively describe the trials and tribulations a commercial adaptation of alternative design processes may cause, while b) explicitly and quantitatively report on the results of the experiments, and how they relate to AAAs. After an introduction of the AAA concept, three design experiments are described and their outcomes analysed, followed by a concluding discussion including suggestions for future studies.

Keywords
Anticipatory adaptive assemblage (AAA), auxiliary loads, material phase transition (MPT) diagrams, pinwheel tiling, benchmarking, complex adaptive systems (CAS), evolutionary architecture, genetic algorithms, building materials, presilience
National Category
Engineering and Technology
Identifiers
urn:nbn:se:kth:diva-285507 (URN)
Funder
Swedish Research Council Formas, EnWoBio 2014-172
Note

QC 20201124

Available from: 2020-11-05 Created: 2020-11-05 Last updated: 2023-12-07Bibliographically approved

Open Access in DiVA

fulltext(68513 kB)727 downloads
File information
File name FULLTEXT01.pdfFile size 68513 kBChecksum SHA-512
e30da9cb39badf82e237ea4c3b5a147e54a34569fbf97804d35993420062bc15a9f00dad8653bdcc862500c411ab377116d1d3af3ac74a3af55d2029ed01bf51
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Larsson, Magnus
By organisation
Building Materials
Engineering and Technology

Search outside of DiVA

GoogleGoogle Scholar
Total: 727 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1744 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf