kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Evaluation of Low Temperature Damage in Asphalt Mixtures with Non-Contact Resonance Testing
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Building Materials.ORCID iD: 0000-0001-9200-5930
2020 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Thetemperature induceddamage in asphalt mixtureshas always been a major distress that requires a substantialconsiderationin the asphalt industry. One of the most important aspects of studying temperature induceddamage is developing a practical test method for evaluation of the material’s resistanceto it. Hence, there is a growing interest in developing testing methodologieswhich are more efficient, less expensive and simpler to perform than the conventional test methods. Impact resonance testing is a well-documented non-destructive testing method,and ithas been successfully appliedon asphalt mixturesto measure their elastic and viscoelastic properties. This research aims at extending the impact resonance testing methodology to characterization of temperature induced damage in asphalt mixtures and to investigate experimentally and numerically damage induced in asphalt mixtures due to thermomechanical mismatch between the masticand aggregate phases.In order to improve temperature control and thus accuracy of the resonance testing, an automated non-contact test procedure is developedwith a loudspeakerutilized as a source of excitation.The developed methodology has been evaluatedfor a range of asphalt concrete materialsand temperatures. The measurementsobtained from the new method have been verified by taking similar resonance frequency measurements usinganinstrumented impact hammer. Results from this work show that repeatable fundamental resonance frequency measurements can be performed onadisc shaped specimen in an automated manner without the need to open thethermal chamberthat is used to condition test specimens.Investigationsofmicro-damage in asphalt concrete due to differential thermal contraction during cooling cycles havebeen carried out experimentally by using the developedautomated non-contact resonance testingcombined withcyclic cooling. The results of the experimental work haveshown the initiation of low temperature micro-damage and a hysteretic behavior of stiffness modulus during thethermal cycles. Energy based micro-mechanical model is also utilized in order to characterize themicro-crackinitiation and growthin asphalt concrete due to cyclic low temperature variations.Results of this approach have indicated the initiation of micro-cracksat low temperatures as well as the decrease in their length with increase in temperature. In order to obtain a quantitative insight into the temperature induced damage formation, a micromechanical finite element model (FEM) of asphalt mixture

under thermal loading is developed. The model is used to investigate the damage evolution during the thermal cycles as well as its effect on material’s stiffness. Four cases ofmastic-aggregate combinations aremodelledin order to investigate effects of aggregate gradation as well as of masticpropertieson the thermal damage evolution. Cohesive Zone Model (CZM) isused to define aggregate-masticinterface so that an initiation of micro-damage due to differential thermal contraction can be probedin terms of its effect on the overall stiffness modulus. It is observed numerically that during the thermal cycles, thermal damage is initiated at the aggregate-mastic interface due to the differential contraction of mastic. It is also shown that the modelling observations are in qualitative agreement with the experimental findings from the resonance testing. Accordingly, the proposed modelling approach is a viable tool for evaluation of theeffect of asphalt mixture design on its resistance to thermally induced damage.

Abstract [sv]

Temperaturinducerade skador i asfaltbeläggningar har alltid varit en viktig faktor som kräver ett väsentligt övervägande iasfaltindustrin. En av de viktigaste aspekterna av att studera temperaturinducerade skador är att utveckla en praktisk provningsmetod för utvärdering av materialets motstånd mot sådana skador. Följaktligen finns det ett växande intresse för att utveckla testmetoder som är effektivare, billigare och enklare att utföra än de konventionella provningsmetoderna. Resonansprovning är en väldokumenterad oförstörande provningsmetod som framgångsrikt har tillämpats på asfalt för att mäta dess elastiska och viskoelastiska egenskaper. Denna forskning syftar till att utvidga metoden för resonansprovning till att karakterisera temperaturinducerad skada i asfalt och att experimentellt och numeriskt undersöka skada som framkallats i asfalt på grund av termomekanisk ojämnhet mellan asfaltbruket och stenskelettet.För att förbättra temperaturkontrollen och därmed noggrannheten i resonansprovningen utvecklas ett automatiskt provförfarande med en högtalare som används som exciteringskälla. Den utvecklade metoden har utvärderats för en rad asfaltbetongmaterial och temperaturer. Mätningarna som erhållits från den nya metoden har verifierats genom att göra liknande resonansfrekvensmätningar med hjälp av en instrumenterad hammare. Resultaten från detta arbete visar att repeterbara mätningar av resonansfrekvenser kan utföras på ett skivformat prov på ett automatiserat sätt utan att behöva öppna klimatskåpet.Undersökning av mikroskador i asfaltbetong på grund av differentiell termisk sammandragning under kylcykler har utförts experimentellt med användning av det utvecklade automatiserade resonansprovet kombinerat med cyklisk kylning. Resultaten av det experimentella arbetet har identifierat uppkomsten av mikroskador under låg temperatur och ett hysteretiskt beteende av styvhetsmodul under de termiska cyklerna. En energibaserad mikromekanisk modell används också för att karakterisera mikrosprickornas initiering och tillväxt i asfaltbetong på grund av cykliska lågtemperaturvariationer. Resultaten av detta tillvägagångssätt har indikeratinitiering av mikrosprickor vid låga temperaturer såväl som minskningen av sprickornas längd med ökad temperatur.För att få en kvantitativ inblick i temperaturinducerad skadebildning i asfalt utvecklas en mikromekanisk finit elementmodell (FEM) av asfalten under termisk belastning. Modellen används för att undersökaskadeutvecklingen i asfalt under de termiska cyklerna samt dess effekt på materialets styvhet. Fyra fall av asfaltbruk och graderingskombinationer beaktas i denna del av studien för att undersöka effekterna av kornkurvan såväl som av asfaltbrukets egenskaper på termisk skadeutveckling. Cohesive Zone Model (CZM) används

för att definiera gränssnittet av asfaltbruk och stenskelett så att en initiering av mikroskada på grund av differentiell termisk kontraktion kan undersökas i termer av dess effekt på den totala styvhetsmodulen. Det observeras numeriskt att under temperaturcyklerna initieras termisk skada vid gränssnittet av asfaltbruk och stenskelett på grund av differentiell kontraktion av asfaltbruket. Det visas också att modelleringsobservationerna överensstämmer kvalitativt med de experimentella resultaten från resonansprovningen avseende hysteretisk styvhetsmodulbeteende under de termiska cyklerna. Följaktligen är det föreslagna modelleringssättet ett möjligt verktyg för utvärdering av asfaltmaterialegenskapers effekt på asfaltens motståndskraft mot termiskt inducerad skada.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2020. , p. 42
Series
TRITA-ABE-DLT ; 2040
Keywords [en]
Asphalt concrete, dynamic modulus, non-contact excitation, resonance testing, thermally induced damage, viscoelasticity
Keywords [sv]
Asfaltbetong, beröringsfri excitation, resonansfrekvens, resonansprovning, styvhetsmodul
National Category
Infrastructure Engineering
Research subject
Civil and Architectural Engineering, Building Materials
Identifiers
URN: urn:nbn:se:kth:diva-285934ISBN: 978-91-7873-724-6 (print)OAI: oai:DiVA.org:kth-285934DiVA, id: diva2:1500871
Public defence
2020-12-10, Through Zoom: https://kth-se.zoom.us/j/66814536386, Du som saknar dator/datorvana kan kontakta amirsh@kth.se / Use the e-mail address if you need technical assistance, Stockholm (English), Stockholm (Swedish), Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20201119

Available from: 2020-11-19 Created: 2020-11-13 Last updated: 2022-06-25Bibliographically approved
List of papers
1. Automated Non‑contact Resonance Excitation Method to Assess Low Temperature Dynamic Modulus of Asphalt Concrete
Open this publication in new window or tab >>Automated Non‑contact Resonance Excitation Method to Assess Low Temperature Dynamic Modulus of Asphalt Concrete
2019 (English)In: Journal of nondestructive evaluation, ISSN 0195-9298, E-ISSN 1573-4862, Vol. 38, no 2Article in journal (Refereed) Published
Abstract [en]

This paper studies the applicability of an automated non-destructive testing method to monitor the stiffness of asphalt concrete at low temperatures. A loudspeaker is used as a source of non-contact excitation of the axially symmetric fundamental resonant frequencies of a disc-shaped asphalt concrete specimen positioned inside an environmental chamber. Measured resonant frequencies are used to calculate the dynamic moduli of the specimen at different temperatures. The repeatability of the method as well as the effect of loudspeaker height above the sample are studied. Results show that the main advantage of the non-contact excitation method, compared to manually applied impact hammer excitation, is that repeatable automated measurements can be performed while the specimen is placed inside an environmental temperature chamber. This methodology enables to study the effect of only low temperature conditioning on the dynamic modulus of asphalt concrete without interference from mechanical loading.

Place, publisher, year, edition, pages
Springer Nature, 2019
Keywords
Resonant frequency, Non-contact resonance, Dynamic modulus, Asphalt concrete
National Category
Infrastructure Engineering
Identifiers
urn:nbn:se:kth:diva-285929 (URN)10.1007/s10921-019-0584-7 (DOI)000463664300001 ()2-s2.0-85063615325 (Scopus ID)
Note

QC 20231002

Available from: 2020-11-13 Created: 2020-11-13 Last updated: 2023-10-02Bibliographically approved
2. Effect of cyclic low temperature conditioning on stiffness modulus ofasphalt concrete based on non-contact resonance testing method
Open this publication in new window or tab >>Effect of cyclic low temperature conditioning on stiffness modulus ofasphalt concrete based on non-contact resonance testing method
2019 (English)In: Construction and Building Materials, ISSN 0950-0618, E-ISSN 1879-0526, Vol. 225, p. 502-509Article in journal (Refereed) Published
Abstract [en]

The stiffness modulus behaviors of three different asphalt concrete specimens that are subjected to cyclic cooling and heating are monitored. In an attempt to identify the sole effect of temperature cycles and to avoid any other biasing effects such as thermal contamination that can possibly corrupt measurements, resonance frequency measurements of the specimens are taken using an automated non-contact resonance method. The resonance frequency measurements are based on the fundamental axially symmetric mode of vibration. A hysteretic effect is observed on the measured resonance frequencies of the specimens with an application of cyclic cooling and heating. Lower stiffness moduli are obtained during the heating phase of a complete cooling and heating cycle. The stiffness moduli are calculated from measured resonance frequencies of the specimens in order to show their relative reductions due to the hysteretic effect. This finding is particularly important since it enables us to observe and understand the effect of the thermal history of asphalt concrete with regards to the reversibility behavior of its stiffness modulus. The damping of the specimens is also calculated from the measured resonance frequencies at the temperatures within the applied cyclic cooling and heating. Their observed behavior is also discussed with respect to a presence of potential micro damage. 

Place, publisher, year, edition, pages
Elsevier BV, 2019
Keywords
Non-contact resonance testing, Dynamic modulus, Asphalt concrete, Resonance frequency
National Category
Infrastructure Engineering
Identifiers
urn:nbn:se:kth:diva-285931 (URN)10.1016/j.conbuildmat.2019.07.194 (DOI)000488305700045 ()2-s2.0-85069731981 (Scopus ID)
Note

QC 20231002

Available from: 2020-11-13 Created: 2020-11-13 Last updated: 2023-10-02Bibliographically approved
3. Application of Energy-Based Crack Initiation Approach to Low-Temperature Damage and Recovery Based on Noncontact Resonance Testing
Open this publication in new window or tab >>Application of Energy-Based Crack Initiation Approach to Low-Temperature Damage and Recovery Based on Noncontact Resonance Testing
2020 (English)In: Journal of materials in civil engineering, ISSN 0899-1561, E-ISSN 1943-5533, Vol. 32, no 9, article id 04020237Article in journal (Refereed) Published
Abstract [en]

Low temperature has a tendency to cause microdamage in asphalt concrete because of the relative thermal contraction of mastic and subsequent accumulation of thermal stresses. This paper presents the applicability of an energy-based micromechanical approach for assessing low-temperature damage and recovery in asphalt concrete based on a newly developed noncontact resonance testing. The principle of local energy balance and redistribution was applied to estimate average thermal microcrack length by considering local thermal strain energy release zones and surface energy of cracks initiated at preexisting air voids. A damage probing test was carried out by thermal loading and unloading of five different asphalt concrete specimens. The test was carried out by using a recently developed noncontact resonance method. The stiffness modulus was determined from the resonance test and utilized in the energy balance and redistribution formulation. Coefficients of thermal contraction of the specimens were also determined based on the noncontact resonance test and by applying the principle of the impact-echo method and calculating changes in thickness of the test specimens.

Place, publisher, year, edition, pages
American Society of Civil Engineers (ASCE), 2020
National Category
Infrastructure Engineering
Identifiers
urn:nbn:se:kth:diva-285932 (URN)10.1061/(ASCE)MT.1943-5533.0003310 (DOI)000587481800012 ()2-s2.0-85087988074 (Scopus ID)
Note

QC 20201118

Available from: 2020-11-13 Created: 2020-11-13 Last updated: 2022-06-25Bibliographically approved
4. Micro-mechanical Modelling of Low temperature-induced micro-damageinitiation in asphalt concrete based on Cohesive zone model
Open this publication in new window or tab >>Micro-mechanical Modelling of Low temperature-induced micro-damageinitiation in asphalt concrete based on Cohesive zone model
Show others...
2020 (English)In: Construction and Building Materials, ISSN 0950-0618, E-ISSN 1879-0526Article in journal (Refereed) Submitted
National Category
Infrastructure Engineering
Identifiers
urn:nbn:se:kth:diva-285933 (URN)
Note

QC 20201117

Available from: 2020-11-13 Created: 2020-11-13 Last updated: 2024-03-18Bibliographically approved

Open Access in DiVA

Abiy_PhD_Theses(2459 kB)436 downloads
File information
File name FULLTEXT01.pdfFile size 2459 kBChecksum SHA-512
eb9270fe456e2285b73eb81c5b2e084c881da72a2369de02e6bc9b8400bd06a83db9f85f80041e18c003cc76531c99ce51ca73e69345771c370f5c05a426fa5d
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Bekele, Abiy
By organisation
Building Materials
Infrastructure Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 446 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1085 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf