kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Symbol Level Precoding with Low Resolution DACs for Constant Envelope OFDM MU-MIMO Systems
Interdisciplinary Centre for Security Reliability and Trust (SnT), University of Luxembourg, Luxembourg, 1855, Luxembourg. (Signal Processing)ORCID iD: 0000-0003-2298-6774
2020 (English)In: IEEE Access, E-ISSN 2169-3536, Vol. 8, p. 12856-12866, article id 8949506Article in journal (Refereed) Published
Abstract [en]

In Constant Envelope Symbol Level Precoding (CESLP), the transmitted signals by the antennas have constant amplitude regardless of the channel realization and the conveyed information symbols. Such solutions enable the use of power-efficient components, i.e. non-linear power amplifiers and thus, are suitable for systems based on large-scale antenna arrays. In the latter systems, the hardware complexity and power consumption can be limiting factors since each antenna element requires dedicated hardware components. These components include the Digital-to-Analog Converters (DACs) that have exponential complexity and power consumption with the number of the supported resolution. To that end, in this paper, a CESLP precoding technique is presented for Multi-User Multiple Input-Multiple Output (MU-MIMO) systems with low resolution DACs. The case of a multi-carrier system employing the well-known Orthogonal Frequency Division Multiplexing (OFDM) technique is considered. The precoding design problem is formulated as a mixed discrete-continuous least-squares optimization one which is NP-hard. An efficient low complexity solution is developed based on the Cyclic Coordinate Descent (CCD) optimization framework. Simulations show that the proposed solution is able to achieve very close performance to the one of the infinite resolution CESLP precoding counterpart even though, it is based on DACs that have resolution of only a few bits.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2020. Vol. 8, p. 12856-12866, article id 8949506
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:kth:diva-286885DOI: 10.1109/ACCESS.2019.2963857ISI: 000524731300001Scopus ID: 2-s2.0-85079762277OAI: oai:DiVA.org:kth-286885DiVA, id: diva2:1506000
Note

QC 20201207

Available from: 2020-12-02 Created: 2020-12-02 Last updated: 2024-03-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ottersten, Björn

Search in DiVA

By author/editor
Ottersten, Björn
In the same journal
IEEE Access
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 15 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf