kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
On the Spectral and Energy Efficiencies of Full-Duplex Cell-Free Massive MIMO
Show others and affiliations
2020 (English)In: IEEE Journal on Selected Areas in Communications, ISSN 0733-8716, E-ISSN 1558-0008, Vol. 38, no 8, p. 1698-1718, article id 9110914Article in journal (Refereed) Published
Abstract [en]

In-band full-duplex (FD) operation is practically more suited for short-range communications such as WiFi and small-cell networks, due to its current practical limitations on the self-interference cancellation. In addition, cell-free massive multiple-input multiple-output (CF-mMIMO) is a new and scalable version of MIMO networks, which is designed to bring service antennas closer to end user equipments (UEs). To achieve higher spectral and energy efficiencies (SE-EE) of a wireless network, it is of practical interest to incorporate FD capability into CF-mMIMO systems to utilize their combined benefits. We formulate a novel and comprehensive optimization problem for the maximization of SE and EE in which power control, access point-UE (AP-UE) association and AP selection are jointly optimized under a realistic power consumption model, resulting in a difficult class of mixed-integer nonconvex programming. To tackle the binary nature of the formulated problem, we propose an efficient approach by exploiting a strong coupling between binary and continuous variables, leading to a more tractable problem. In this regard, two low-complexity transmission designs based on zero-forcing (ZF) are proposed. Combining tools from inner approximation framework and Dinkelbach method, we develop simple iterative algorithms with polynomial computational complexity in each iteration and strong theoretical performance guaranteed. Furthermore, towards a robust design for FD CF-mMIMO, a novel heap-based pilot assignment algorithm is proposed to mitigate effects of pilot contamination. Numerical results show that our proposed designs with realistic parameters significantly outperform the well-known approaches (i.e., small-cell and collocated mMIMO) in terms of the SE and EE. Notably, the proposed ZF designs require much less execution time than the simple maximum ratio transmission/combining.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2020. Vol. 38, no 8, p. 1698-1718, article id 9110914
Keywords [en]
Cell-free massive multiple-input multiple-output, energy efficiency, full-duplex radio, inner approximation, spectral efficiency, successive interference cancellation
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:kth:diva-286850DOI: 10.1109/JSAC.2020.3000810ISI: 000562039400004Scopus ID: 2-s2.0-85086722978OAI: oai:DiVA.org:kth-286850DiVA, id: diva2:1506038
Note

QC 20201207

Available from: 2020-12-02 Created: 2020-12-02 Last updated: 2023-07-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ottersten, Björn

Search in DiVA

By author/editor
Ottersten, Björn
In the same journal
IEEE Journal on Selected Areas in Communications
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 35 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf