kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Feedback control for the precise shape morphing of 4D printed shape memory polymer
KTH, School of Industrial Engineering and Management (ITM), Production Engineering, Sustainable Production Systems.ORCID iD: 0000-0001-9221-0918
KTH, School of Industrial Engineering and Management (ITM), Production Engineering, Sustainable Production Systems.
Department of Software Engineering, Beijing Information Science and Technology University, Beijing, China.
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.
Show others and affiliations
2021 (English)In: IEEE Transactions on Industrial Electronics, ISSN 0278-0046, E-ISSN 1557-9948, Vol. 68, no 12, p. 12698-12707Article in journal (Refereed) Published
Abstract [en]

Four-dimensional printing (4DP) is a newly emerged technology that uses smart materials for additive manufacturing and thus enables shape and/or property change upon stimulus after the printing process. Present study on 4DP has been focused on open loop stimulus, which can hardly ensure high shape precision and predictable final states. In this paper, a new closed loop 4DP (CL4DP) process supplementing 4D printed actuation with closed loop control methods is proposed. Image feedback is used for enhancing the conventional open loop 4DP morphing process and a controller is implemented to regulate the intensity of the stimulus accordingly in real-time. To achieve precise control, a nonlinear affine system model is built by model identification with measurement data to describe the dynamic shape recovery process of the 4D printed Shape Memory Polymer (SMP). Precise shape control is achieved and the effects of controller parameters on the precision of CL4DP are studied. Traditionally, SMP has a discrete number of selected steady states. With CL4DP, such steady states can be continuous and arbitrary.

Place, publisher, year, edition, pages
IEEE, 2021. Vol. 68, no 12, p. 12698-12707
Keywords [en]
closed loop control, 4D printing, shape memory polymer
National Category
Control Engineering
Research subject
Industrial Information and Control Systems
Identifiers
URN: urn:nbn:se:kth:diva-287569DOI: 10.1109/TIE.2020.3040668ISI: 000692884200102Scopus ID: 2-s2.0-85097951198OAI: oai:DiVA.org:kth-287569DiVA, id: diva2:1510372
Projects
4D Printing
Funder
Swedish Research Council, 2017-04550XPRES - Initiative for excellence in production research
Note

QC 20250401

Available from: 2020-12-16 Created: 2020-12-16 Last updated: 2025-04-01Bibliographically approved
In thesis
1. Learning-based Control for 4D Printing and Soft Robotics
Open this publication in new window or tab >>Learning-based Control for 4D Printing and Soft Robotics
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Exploiting novel sensors and actuators made of flexible and smart materials becomes a new trend in robotics research. The studies on the design, production, and control of the new type of robots motivate the research fields of soft robots and 4D printed robots. 3D Printing (3DP) is an additive manufacturing technology that is widely used in printing flexible materials to fabricate soft robots. 4D Printing (4DP) combines 3DP technologies with smart materials to produce transformable devices. 4DP first prints structures with specifically designed responsive materials. When external stimuli such as temperature, voltage, or magnetic field are applied to the printed structure, it changes shape in a programmable way. The shape morphing property of 4DP makes it a novel approach to the actuators of robots.

The employment of these special materials empowers these new robots with better compliance and adaptability to the working environment. However, compared with the rigid counterparts, they also have complex dynamic properties such as substantial non-linearity and time-variance. These factors make the precise modeling and robust control of these new robots challenging and thus hinder their potential applications. Focusing on soft robotic systems enabled by 3DP and 4DP approaches, this dissertation studies both traditional and Machine Learning (ML)-based approaches to the modeling, perception, and control of soft, non-linear, and time-variant robotic systems. The main contributions of this dissertation are:

  • The scheme of Closed-Loop (CL) controlled 4DP (CL4DP) using temperature stimulated Shape Memory Polymer (SMP) is designed and validated numerically and experimentally. The feedback control system increases the precision and robustness of the shape morphing process of 4D printed SMP. Applications of CL4DP are explored.
  • Data-driven model identification methods are applied to learn the dynamic model of the shape morphing process of CL4DP and the learned model has good quality to support model-based control design. Model-free and adaptive Reinforcement Learning (RL) controllers are developed to deal with the non-linearity and time variance of 4D printed actuators. To improve the stability and quick adaptability, a concise basis function set is selected instead of blindly using Deep Neural Networks (DNNs).
  • A quadruped robot enabled by soft actuators and its simulation model are developed. The computation efficiency and model accuracy of the simulator are studied and optimized by comparing different simulation methods such as Finite Element Method (FEM) and lumped parameter method.
  • The optimal walking gait pattern of a soft-legged quadruped robot is found by grid parameter search and RL with a physics based simulation model. To speed up the RL training process, modeling tricks are used to reduce the simulation time of the model and curriculum learning is used to reduce the learning time.
  • A soft sensor made by printable conductive materials and 3DP is designed and optimally calibrated to estimate the shape of a pneumatically driven soft actuator. The geometry of the soft sensor is optimally designed for the best linearity, hysteresis and drift properties. The online estimation is based on a linear regression model learned from experimental data.
  • A pneumatically driven soft gripper is developed by 3DP, the printable soft sensor, and pole-placement control methods. The operation of the gripper does not require an external image feedback system to measure its shape, which is estimated by the integrated soft sensor. The position feedback by the soft sensor and the controller by the pole-placement method enable the soft gripper to perform complex tasks with high precision.
Abstract [sv]

Användande av nya sensorer och aktuatorer av flexibla och smarta material har blivit en ny trend inom robotikforskning. Studier om design, produktion och styrning av den nya typen av robotar motiverar förskningen om mjuka robotar och 4D-printade robotar. 3D Printing (3DP) är en additiv tillverkningsteknik som används i stor utsträckning vid utskrift av flexibla material för att tillverka mjuka robotar. 4D Printing (4DP) kombinerar 3DP-teknik med smarta material för att producera transformerbara enheter. 4DP skriver först ut strukturer med specifikt designade responsiva material. När yttre stimuli som temperatur, spänning eller magnetfält appliceras på den utskrivna strukturen ändrar den form på ett programmerbart sätt. Omformningsegenskapen hos 4DP skapar ett nytt sätt att aktuera robotar.

Användningen av dessa specialmaterial ger dessa nya robotar bättre följsamhet och anpassningsförmåga till sin arbetsmiljö. Men jämfört med de stela motsvarigheterna har de också komplexa dynamiska egenskaper såsom betydande icke-linjäritet och tidsvarians. Dessa faktorer gör den nogranna modelleringen och robusta kontrollen av dessa nya robotar utmanande och hindrar därmed deras potentiella tillämpningar. Med fokus på mjuka robotsystem som möjliggörs av 3DP- och 4DP-metoder, studerar denna avhandling både traditionella och Machine Learning (ML)-baserade metoder för modellering, perception och kontroll av mjuka, icke-linjära och tidsvarierande robotsystem. De viktigaste bidragen från denna avhandling är:

  • En metod för Closed-Loop (CL) reglerad 4DP (CL4DP) med temperaturstimulerad Shape Memory Polymer (SMP) har utvecklats och validerats både numeriskt och experimentellt. Reglersystemet ökar precisionen och robustheten i omformningsegenskapen för 4D-utskrivet SMP. Tillämpningar av CL4DP utforskas.
  • Metoder för datadriven modellidentifiering tillämpas för att lära sig den dynamiska modellen av omformningsprocessen för CL4DP och den inlärda modellen är lämplig modellbaserad reglering. Modellfria och adaptiva Reinforcement Learning-regulatorer (RL) har utvecklats för att hantera icke-linjäriteten och tidsvariationen hos 4D-utskrivna aktuatorer. För att förbättra stabiliteten och snabb anpassningsförmåga väljs en mindre uppsättning basfunktioner istället för att blint använda Deep Neural Networks (DNN).
  • En fyrbent robot med mjuka aktuatorer och dess simuleringsmodell utvecklas. Beräknings effektiviteten och modell noggrannheten hos simulatorn studeras och optimeras genom att jämföra olika simuleringsmetoder såsom Finite Element Method (FEM) och lumped parameter method.
  • Det optimala gångmönstret för en mjukbent fyrbensrobot hittas genom rutnäts-sökning och RL med en fysikbaserad simuleringsmodell. För att effektivisera RL-tränings-processen används modelleringsknep för att minska simuleringstiden för modellen och curriculum learning används för att minska inlärningstiden.
  • En mjuk sensor gjord av utskrivbara elektriskt ledande material och 3DP är designad och optimalt kalibrerad för att uppskatta formen på ett pneumatiskt driven mjuk aktuator. Den mjuka sensorns geometri är optimalt utformad för bästa linjäritet, hysteres och driftegenskaper. Online-uppskattningen är baserad på en linjär regressionsmodell som lärts från experimentella data.
  • En pneumatiskt driven mjukgripare är utvecklad av 3DP, den utskrivbara mjuka sensorn och polplacerings reglering. Griparens funktion kräver inte ett externt bildåterkopplingssystem för att mäta dess form, vilket istället uppskattas av den integrerade mjuka sensorn. Positionsåterkopplingen från den mjuka sensorn och regulatorn genom polplaceringmetoden gör att den mjuka griparen kan utföra komplexa uppgifter med hög precision.
Place, publisher, year, edition, pages
Stockholm: Kungliga tekniska högskolan, 2022. p. 67
Series
TRITA-ITM-AVL ; 2022:32
Keywords
3D Printing, 4D Printing, Soft Robots, Machine Learning, Reinforcement Learning, Control
National Category
Robotics and automation Control Engineering Production Engineering, Human Work Science and Ergonomics
Research subject
Production Engineering
Identifiers
urn:nbn:se:kth:diva-319489 (URN)978-91-8040-379-5 (ISBN)
Public defence
2022-11-11, Gladan/ https://kth-se.zoom.us/j/8822145866, Brinellvägen 83, Stockholm, 09:00 (English)
Opponent
Supervisors
Available from: 2022-10-12 Created: 2022-10-07 Last updated: 2025-02-05Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ji, QingleiChen, MoZhang, XiranWang, Xi VincentWang, LihuiFeng, Lei

Search in DiVA

By author/editor
Ji, QingleiChen, MoZhang, XiranWang, Xi VincentWang, LihuiFeng, Lei
By organisation
Sustainable Production SystemsMechatronicsProduction Engineering
In the same journal
IEEE Transactions on Industrial Electronics
Control Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 303 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf