kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Self-Assembled Polyester Dendrimer/Cellulose Nanofibril Hydrogels with Extraordinary Antibacterial Activity
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.ORCID iD: 0000-0001-7639-1173
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0003-1874-2187
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0002-9597-9578
Show others and affiliations
2020 (English)In: Pharmaceutics, E-ISSN 1999-4923, Vol. 12, no 12, article id 1139Article in journal (Refereed) Published
Abstract [en]

Cationic dendrimers are intriguing materials that can be used as antibacterial materials; however, they display significant cytotoxicity towards diverse cell lines at high generations or high doses, which limits their applications in biomedical fields. In order to decrease the cytotoxicity, a series of biocompatible hybrid hydrogels based on cationic dendrimers and carboxylated cellulose nanofibrils were easily synthesized by non-covalent self-assembly under physiological conditions without external stimuli. The cationic dendrimers from generation 2 (G2) to generation 4 (G4) based on trimethylolpronane (TMP) and 2,2-bis (methylol)propionic acid (bis-MPA) were synthesized through fluoride promoted esterification chemistry (FPE chemistry). FTIR was used to show the presence of the cationic dendrimers within the hybrid hydrogels, and the distribution of the cationic dendrimers was even verified using elemental analysis of nitrogen content. The hybrid hydrogels formed from G3 and G4 showed 100% killing efficiency towards Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) with bacterial concentrations ranging from 10(5) CFU/mL to 10(7) CFU/mL. Remarkably, the hybrid hydrogels also showed good biocompatibility most probably due to the incorporation of the biocompatible CNFs that slowed down the release of the cationic dendrimers from the hybrid hydrogels, hence showing great promise as an antibacterial material for biomedical applications.

Place, publisher, year, edition, pages
MDPI , 2020. Vol. 12, no 12, article id 1139
Keywords [en]
cationic dendrimer, antibacterial materials, carboxylated cellulose nanofibrils, hybrid hydrogels
National Category
Physical Chemistry
Identifiers
URN: urn:nbn:se:kth:diva-289013DOI: 10.3390/pharmaceutics12121139ISI: 000602524100001PubMedID: 33255607Scopus ID: 2-s2.0-85096697401OAI: oai:DiVA.org:kth-289013DiVA, id: diva2:1522116
Funder
Knut and Alice Wallenberg Foundation
Note

QC 20210125

Available from: 2021-01-25 Created: 2021-01-25 Last updated: 2024-07-04Bibliographically approved
In thesis
1. The synthesis of dendritic hydrogels and inorganic nanoparticles and their application as antibacterial and imaging materials
Open this publication in new window or tab >>The synthesis of dendritic hydrogels and inorganic nanoparticles and their application as antibacterial and imaging materials
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Abstract

The overuse and misuse of conventional antibiotics has caused increased prevalence of drug-resistant bacteria, the infections of which cause high mortality and economic losses per year. It is therefore crucial to develop new technologies and treatments for infections caused by drug-resistant bacteria. Dendritic polymer-based hydrogels and nanomaterials have shown promise as alternatives to traditional small-molecule antibiotics.

Third generation (G3) allyl-functional hyperbranched dendritic-linear-dendritic copolymers (HBDLDs) based on polyethylene glycol (PEG) and 2,2-bis(hydroxymethyl) propionic acid (bis-MPA) were synthesized, and used to form hydrogels with a dithiol-functional PEG crosslinker using thiol-ene coupling (TEC). The hydrogels were used to co-deliver both hydrophilic and hydrophobic antibiotics with the aid of dendritic nanogels (DNGs). Antibacterial hydrogel band aids were also fabricated in a facile procedure.

Amino-functional HBDLDs based on PEG and bis-MPA were synthesized, and together with a di-N-hydroxysuccinimide-functional PEG as the crosslinker, amino-functional hydrogels with inherent antibacterial properties were fabricated. The cationic hydrogels are highly effective towards a wide range of wound-isolated bacteria, and can reduce inflammation and oxidative stress.

To minimize the cytotoxicity of amino-functional dendrimers, self-assembled hydrogels based on cationic dendrimers and cellulose nanofibrils were fabricated. Cationic dendrimers and their fragments can be released from the hydrogels to kill bacteria whilst showing insignificant cytotoxicity with human cells.

Bis-MPA dendrimers with both amino and allyl functionalities were also synthesized. Allyl groups can be used to form hydrogels with a dithiol-functional PEG crosslinker via TEC, and the amino groups provide the hydrogels with antibacterial properties.

Fluorescent silicon nanoparticles (SiNPs) were synthesized and their interaction with bacteria was investigated. SiNPs exhibited strong binding to Staphylococcus aureus (S. aureus), showing promise as a potential capturing and imaging agent for S. aureus.

Abstract [sv]

Sammanfattning

Överanvändning och missbruk av konventionell antibiotika har orsakat förekomsten av läkemedelsresistenta bakterier, detta har resulterat i mer aggressiva infektioner som orsakar hög dödlighet och stora ekonomiska kostnader varje år. Det är därför viktigt att utveckla nya tekniker för att behandla infektioner orsakade av dessa läkemedelsresistenta bakterier. Hydrogeler och nanomaterial baserade på dendritiska polymerer har visat stor potential som alternativ till traditionell antibiotika.

Allyl-funktionella hyperförgrenade dendritiska-linjära-dendritiska sampolymerer (HBDLD), baserade på polyetylenglykol (PEG) och 2,2-bis (hydroximetyl) propansyra (bis-MPA) av tredje generationen (G3), syntetiserades och användes för att bilda hydrogeler med en ditiolfunktionell PEG-tvärbindare via av tiol-en-koppling (TEC). Hydrogelerna användes för att leverera både hydrofil och hydrofob antibiotika med hjälp av dendritiska nanogeler (DNG). Plåster av den antibakteriella hydrogelen tillverkades också via en enkel procedur.

Aminfunktionella HBDLD baserade på PEG och bis-MPA syntetiserades och användes tillsammans med di-N-hydroxisuccinimid-funktionell PEG för att tillverka aminfunktionella hydrogeler med antibakteriella egenskaper. De katjoniska hydrogelerna är mycket effektiva mot ett brett spektrum av bakterier isolerade från sår och kan dessutom minska inflammation och oxidativ stress.

För att minimera cytotoxiciteten hos aminfunktionella dendrimerer tillverkades hydrogeler baserade på katjoniska dendrimerer och nanofibriller av cellulosa. De katjoniska dendrimererna och fragment från dem kan frigöras från hydrogelerna i koncentrationer som dödar bakterier men inte är toxiska för humana celler.

Bis-MPA dendrimerer med både amin- och allylfunktionella grupper syntetiserades också. Allylgrupperna kan användas för att bilda hydrogeler med en ditiolfunktionell PEG tvärbindare via TEC, och aminerna ger hydrogelerna antibakteriella egenskaper.

Fluorescerande kiselnanopartiklar (SiNP) syntetiserades och deras interaktion med bakterier undersöktes. SiNP uppvisade stark bindning till Staphylococcus aureus (S. aureus), vilket visar en lovande potential för användning som kontrastmedel eller för att fånga in dessa bakterier.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. p. 65
Series
TRITA-CBH-FOU ; 2021:27
Keywords
antibacterial hydrogels, dendritic polymers, dendrimers, silicon nanoparticles, cellulose nanofibrils, drug-resistant bacteria, wound dressings
National Category
Natural Sciences
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-295585 (URN)978-91-7873-898-4 (ISBN)
Public defence
2021-06-15, https://kth-se.zoom.us/j/67880817786, 10:00 (English)
Opponent
Supervisors
Note

QC 2021-05-24

Available from: 2021-05-24 Created: 2021-05-24 Last updated: 2022-06-25Bibliographically approved
2. Cationic Dendritic Polymers and Their Hybridization with Cellulose Nanofibrils
Open this publication in new window or tab >>Cationic Dendritic Polymers and Their Hybridization with Cellulose Nanofibrils
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Antimicrobial resistance (AMR) is one of the major global threats to thehealth of humans, animals, plants and ecosystems. AMR arises whenbacteria, viruses, fungi, and parasites undergo changes over time; makingmedicines such as antibiotics, antivirals, antifungals and antiparasiticineffective at treating infections. In 2014, it caused approximately 700 000deaths worldwide which increased to 1.27 million deaths in 2019.Consequently, there is a need to explore novel technologies andtreatments. Within the development of alternatives to conventional smallmoleculeantibiotics, polycationic macromolecules have emerged, such asdendritic polymers and their nanomaterials.Dendrimers are high precision, branched macromolecules with a highdensity of terminal functional groups. Their unique architecture and abilityfor precise control over both shape and surface functionality make themsuitable for biomedical applications such as drug delivery, gene deliveryand antimicrobials.Cellulose nanofibrils (CNFs) are nanoscale fibrils of cellulose, an abundantpolymer typically derived from wood. The prolonged reliance on fossilbasedproducts is associated with a wide range of adverse environmentalconsequences which have prompted the exploration of raw materialsderived from renewable resources. The intriguing properties of CNFs, suchas high elastic moduli and low densities, have made them attractive asstructural materials from sustainable sources that can form 3D networks.The combination of cationic dendritic polymers and cellulose nanofibrils isexplored in this thesis and presents an exciting avenue for the developmentof innovative biomaterials with antibacterial properties andbiocompatibility. Part of the work focuses on the synthesis of cationicdendritic polymers, with varying types of cationic groups at the peripheralthrough the use of fluoride-promoted esterification chemistry and thioleneclick reactions. Another part focuses on creating crosslinked hybridhydrogels using cationic dendrimers and anionic CNFs. Finally, a part ofthe thesis presents the preparation of hydrogels consisting of dendriticlinear-dendritic (DLD) polymer solutions and anionic CNFs. Overall, thefindings showcase the versatility and promise of the developed cationicdendritic polymers and CNF-based hydrogels against Escherichia coli,Pseudomonas aeruginosa and Staphylococcus aureus bacterial strainswhilst exhibiting low cytotoxicity.

Abstract [sv]

Antimikrobiell resistens (AMR) är ett av dem stora globala hoten motmänniskors, djurs, växters och ekosystemens hälsa. AMR uppstår närbakterier, virus, svampar och parasiter genomgår förändringar över tid,vilket gör läkemedel som antibiotika, antivirala, svampdödande ochantiparasitära medel ineffektiva vid behandling av infektioner. År 2014orsakade AMR ungefär 700 000 dödsfall över hela världen och siffranökade till 1,27 miljoner under 2019. Därför finns det ett behov av attutforska nya teknologier och behandlingar. Inom utvecklingen avalternativ till konventionella småmolekylära antibiotika harpolykatjoniska makromolekyler såsom dendritiska polymerer framträtt.Dendrimerer är kraftigt förgrenade makromolekyler och perfektdefinierade med en hög densitet av funktionella grupper. Deras unikaarkitektur gör dem intressanta för biomedicinska applikationer somfrisättning av läkemedel och antimikrobiella material.Cellulosa nanofibriller (CNF) är fibriller av cellulosa med en diameter inanoskala, en polymer som vanligtvis utvinns från trä. Det långvarigaberoendet av fossilbaserade produkter har resulterat i allvarligamiljökonsekvenser, vilket har drivit på utvecklingen av materialproducerade från förnyelsebara råvaror. CNF har fascinerande egenskapersom hög elasticitetsmodul och låga densiteter, vilket har gjort demattraktiva som strukturella material från hållbara källor som kan bilda 3Dnätverk.Kombinationen av katjoniska dendritiska polymerer och cellulosananofibriller utforskas i detta arbete och presenterar en spännandeutveckling av innovativa biomaterial som är antibakteriella ochbiokompatibla. En del av arbetet är fokuserad på syntesen av katjoniskadendritiska polymerer med varierande typer av katjoniska funktionalitetpå ytan genom att använda esterifieringsreaktioner som katalyseras avcesiumfluorid och därefter tiol-en-klickreaktioner. En annan del ärfokuserad på att skapa hybridhydrogeler som består av katjoniskadendritiska polymerer och anjoniska CNF. Vidare undersöktes hydrogelerbestående av dendritiska-linjära-dendritiska (DLD) polymerer ochanjoniska CNF. Sammanfattningsvis påvisade resultaten mångsidighetenoch potentialen hos dem utvecklade katjoniska dendritiska polymerernaoch CNF-baserade hydrogelerna mot bakteriestammar som Escherichiacoli, Pseudomonas aeruginosa och Staphylococcus aureus, samtidigt somde visade låg cytotoxicitet.

Place, publisher, year, edition, pages
Stockholm, Sweden: KTH Royal Institute of Technology, 2023. p. 66
Series
TRITA-CBH-FOU ; 2023:33
Keywords
Dendritic polymers; antibacterial materials; carboxylated cellulose nanofibrils; hybrid hydrogels; bis-MPA polyester dendrimers; dendritic linear dendritic
National Category
Materials Chemistry Organic Chemistry Polymer Chemistry Paper, Pulp and Fiber Technology
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-334404 (URN)978-91-8040-643-7 (ISBN)
Public defence
2023-09-15, F3, Lindstedtsvägen 26 & 28, Stockholm, 09:00 (English)
Opponent
Supervisors
Funder
Knut and Alice Wallenberg Foundation
Note

QC 2023-08-21

Embargo godkänt av skolchef Amelie Eriksson Karlström via e-post 2023-08-22.

Available from: 2023-08-21 Created: 2023-08-18 Last updated: 2024-08-21Bibliographically approved

Open Access in DiVA

fulltext(3781 kB)82 downloads
File information
File name FULLTEXT01.pdfFile size 3781 kBChecksum SHA-512
d3e125f7f5252d2605bd816d4cf4a3de0b32f59daac7e40051a1c8f78afe96ca8c62937e8a3b1342d989874d67178a9326704bc2f9a403de25b283134f8c1635
Type fulltextMimetype application/pdf

Other links

Publisher's full textPubMedScopus

Authority records

Fan, YanmiaoNamata, FaridahErlandsson, JohanZhang, YuningWågberg, LarsMalkoch, Michael

Search in DiVA

By author/editor
Fan, YanmiaoNamata, FaridahErlandsson, JohanZhang, YuningWågberg, LarsMalkoch, Michael
By organisation
Fibre- and Polymer TechnologyWallenberg Wood Science Center
In the same journal
Pharmaceutics
Physical Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 82 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 283 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf