kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Numerical simulations of flow discharge and behaviours in spillways
KTH, School of Architecture and the Built Environment (ABE), Civil and Architectural Engineering, Concrete Structures.
2021 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

A spillway is an important component of a dam and serves as a flood release structure. It achieves controlled discharge of water and protects the dam from overtopping. The majority of the hydropower dams were built before the 1980s, and many spillways are undersized in light of the present design flood guidelines. Another issue that arises in connection with the high design floods is the energy dissipation capacity. Many existing energy-dissipating arrangements are insufficient or construed only for a design flood standard at the time of dam construction. The increment in the flood discharges requires that the energy dissipation should be improved to obtain sufficient capacity or higher efficiency. In addition, the high-velocity flow is a major concern in the design of spillways. If the flow velocity exceeds approximately 20 m/s, the risk of cavitation may arise. In Sweden, many dams belong to this category. To address these issues, an assessment of their discharge behaviours is required. Innovative engineering solutions for better energy dissipation and cavitation mitigation are also necessary for safe operation. This thesis presents machine learning based methods for discharge estimation. Three data-driven models are developed to study the discharge behaviours of the overflow weirs. Their reliability is validated through the comparison with the experimental and empirical results. These models are capable of giving accurate predictions and show superiority over the conventional approaches. With high accuracy and adaptability, data-driven models are an effective and fast alternative for spillway discharge prediction. This research also focuses on the hydraulic design of stepped spillways, aiming to devise innovative engineering solutions to enhance energy dissipation and reduce cavitation risks. Consequently, several unconventional step layouts are conceived and their hydraulic behaviours are investigated. The modified configurations include steps with chamfers and cavity blockages, non-linear steps and inclined steps. This part attempts to gain insight into the effects of the step geometries on the spillway hydraulics via computational fluid dynamics, which provides references for engineering applications.

Abstract [sv]

Ett utskov är en viktig komponent i en damm och fungerar som ett skydd mot översvämning. Det avbördar vatten på ett kontrollerat sätt och skyddar dammen från överströmning. Majoriteten av vattenkraftsdammarna byggdes före 1980-talet och många utskov är underdimensionerade i förhållande till de nuvarande riktlinjerna för utformning med avseende på dimensionerande flöden. En annan fråga som uppstår i samband med höga flöden är energiomvandlingskapaciteten. Många befintliga arrangemang för reducering omvandling av vattnets rörelseenergi är otillräckliga eller endast anpassade för det dimensionerande flöde som gällde vid tidpunkten för dammens uppförande. En avbördningsökning kräver i sin tur att energiomvandlingsförmågan förbättras för att uppnå tillräcklig kapacitet eller högre effektivitet. Dessutom är höghastighetsflödet ett stort bekymmer vid utformningen av utskov. Om flödeshastigheten överstiger t.ex. 20 m/s uppstår risk för kavitation i vattenvägar. I Sverige hör många dammar till denna kategori. För att lösa dessa problemställningar behöver en utvärdering av avbördningsanordningar göras. Innovativa tekniska lösningar som syftar till effektiv hantering av flödesenergi och kavitationsreducering, vilka utgör nödvändiga förutsättningar för säker drift av anläggningar.

Denna uppsats presenterar maskininlärningsbaserade metoder för att prognostisera avbördning i dammar. Tre datadrivna modeller har utvecklats för att studera avbördningsegenskaper hos överfallsdammarna. Deras tillförlitlighet valideras genom jämförelse med experimentella och empiriska resultat. Modellerna kan ge noggrann uppskattning, som kan användas som ett tillförlitligt alternativ för bestämning av avbördning. Forskningen fokuserar också på den hydrauliska utformningen av stegade bräddavlopp (s.k. stepped spillway), i syfte att utveckla innovativa tekniska lösningar för att åstadkomma hög energiförlust och minska kavitationsrisker. Flera okonventionella stegformade geometrier föreslås och deras hydrauliska egenskaper undersöks. Denna del syftar till att, via numerisk simulering, ge en inblick i vilka effekter olika steggeometrier har på avbördningshydrauliken, vilken tillhandahåller referens för tekniska applikationer.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. , p. 48
Series
TRITA-ABE-DLT ; 2021:211
Keywords [en]
Spillway, step geometry, discharge prediction, flow behaviour, machine learning, computational fluid dynamics
Keywords [sv]
Utskov, steggeometri, avbördningsuppskattning, flödesbeteende strömningsegenskap, maskininlärning, flödesdynamisk beräkningsanalys numerisk simulering
National Category
Civil Engineering
Research subject
Civil and Architectural Engineering, Concrete Structures
Identifiers
URN: urn:nbn:se:kth:diva-289591ISBN: 978-91-7873-736-9 (print)OAI: oai:DiVA.org:kth-289591DiVA, id: diva2:1525621
Presentation
2021-03-01, Videolänk https://kth-se.zoom.us/j/65774256738, Du som saknar dator /datorvana kontakta Anders Ansell anders.ansell@byv.kth.se / Use the e-mail address if you need technical assistance., Stockholm, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20210205

Available from: 2021-02-05 Created: 2021-02-04 Last updated: 2022-09-19Bibliographically approved
List of papers
1. Discharge prediction for rectangular sharp-crested weirs by machine learning techniques
Open this publication in new window or tab >>Discharge prediction for rectangular sharp-crested weirs by machine learning techniques
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The stage-discharge relationship of a weir is essential for a posteriori calculations of flow discharges. Conventionally, it is determined by regression methods, which is time-consuming and may subject to limited prediction accuracy. With the intention to provide better estimate, the machine learning models, artificial neural network (ANN), support vector machine (SVM) and extreme learning machine (ELM), are assessed for prediction of discharges of rectangular sharp-crested weirs. A large number of experimental data sets are adopted to develop and calibrate these models. Different input scenarios and data management strategies are employed for optimization of the models, for which performance is evaluated in the light of statistical criteria. The results show that all three models are capable of predicting the discharge coefficient with high accuracy, but the SVM exhibits somewhat better performance. Its maximum and mean relative error are respectively 5.44 and 0.99%, and 99% of the predicted data show an error below 5%. The coefficient of determination and root mean square error are 0.95 and 0.01, respectively. The model sensitivity is examined, indicative of the dominant roles of weir Reynolds number and contraction ratio in discharge estimation. The existing empirical formulas are assessed and compared against the machine learning models. It is found that the relationship proposed by Vatankhah exhibits a highest accuracy. However, it is still less accurate than the machine learning approaches. The study is intended to provide reference for discharge determination of overflow structures including spillways.

National Category
Civil Engineering
Identifiers
urn:nbn:se:kth:diva-289586 (URN)
Note

QC 20210209

Available from: 2021-02-04 Created: 2021-02-04 Last updated: 2022-06-25Bibliographically approved
2. Numerical Modelling of Air-Water Flows over a Stepped Spillway with Chamfers and Cavity Blockages
Open this publication in new window or tab >>Numerical Modelling of Air-Water Flows over a Stepped Spillway with Chamfers and Cavity Blockages
2020 (English)In: KSCE Journal of Civil Engineering, ISSN 1226-7988, E-ISSN 1976-3808, Vol. 24, no 1, p. 99-109Article in journal (Refereed) Published
Abstract [en]

Owing to effective aeration and energy dissipation, a stepped spillway is commonly used in a roller-compacted concrete (RCC) dam. However, its complex air-water flow features are far from being fully understood. Roughness density, step and cavity shapes are essential parameters. Numerical simulations are carried out to investigate their effects on hydraulic properties. In combination with the realizable k-epsilon turbulence model, the two-phase Mixture Model is used. The results indicate higher air concentrations for the spillway with rounded steps than the ones with trapezoidal steps; the roughness density and cavity shape show no observable effects on the aeration performance with cavity blockages. The characteristic air-water velocity for the trapezoidal steps layout is larger than that for the rounded steps. However, neither layout is sensitive to the roughness density; the velocity results for trapezoidal cavity and rounded cavity cases are almost independent of the roughness density. The velocity for all cases exclusive of trapezoidal steps increase with an increase in roughness density. The min. and max. pressures on the trapezoidal steps are slightly larger than those on the rounded steps; they increase with an increasing roughness density. The cavity shape and roughness density do not evidently influence the extreme pressures. Compared with the conventional step layout, chamfering the step edges slightly enhance the energy dissipation; partially blocking the cavities do not lead to any substantial change. In addition, the energy loss is not clearly related to the roughness density and step edge/cavity shape.

Place, publisher, year, edition, pages
KOREAN SOCIETY OF CIVIL ENGINEERS-KSCE, 2020
Keywords
Numerical modelling, Stepped spillway, Air-water flow, Chamfer, Step cavity
National Category
Civil Engineering
Identifiers
urn:nbn:se:kth:diva-269496 (URN)10.1007/s12205-020-1115-x (DOI)000511686700010 ()2-s2.0-85075943327 (Scopus ID)
Note

QC 20200309

Available from: 2020-03-09 Created: 2020-03-09 Last updated: 2023-05-10Bibliographically approved
3. CFD Modelling of a Stepped Spillway with Various Step Layouts
Open this publication in new window or tab >>CFD Modelling of a Stepped Spillway with Various Step Layouts
2019 (English)In: Mathematical problems in engineering (Print), ISSN 1024-123X, E-ISSN 1563-5147, Vol. 2019, article id 6215739Article in journal (Refereed) Published
Abstract [en]

A traditional stepped spillway is prone to cavitation risks. To improve its hydraulic behaviors, distorted step faces and pool weirs are devised. By numerical modelling, comparative studies are conducted to look into the flow features. The pressures on step surfaces of the unconventional layouts exhibit 3D distributions. Pool weirs are essential in increasing both the min. and max. pressure loads. Pressures on the downstream bed show a unique pattern for V- and inverted V-shaped models, with the extreme pressures at the sidewalls for the former and at the central plane for the latter. Symmetrical secondary flows are formed in V- and inverted V-shaped cases with different patterns. Distributions of turbulent kinetic energy suggest differences in flow motions in all cases. Furthermore, the relative energy loss of flat setups is similar to 5.4% lower than that of the pooled ones with the same step face angle; inverting the face angle does not give rise to noticeable change. The results provide reference for relevant projects.

Place, publisher, year, edition, pages
Hindawi Publishing Corporation, 2019
National Category
Civil Engineering
Identifiers
urn:nbn:se:kth:diva-266178 (URN)10.1155/2019/6215739 (DOI)000502054400004 ()2-s2.0-85076517144 (Scopus ID)
Note

QC 20200109

Available from: 2020-01-09 Created: 2020-01-09 Last updated: 2022-06-26Bibliographically approved
4. Effects of Inclination Angles on Stepped Chute Flows
Open this publication in new window or tab >>Effects of Inclination Angles on Stepped Chute Flows
2020 (English)In: Applied Sciences, E-ISSN 2076-3417, Vol. 10, no 18, article id 6202Article in journal (Refereed) Published
Abstract [en]

Owing to its effective energy dissipation and aeration, a stepped spillway is commonly used for flood release in hydraulic projects. Its conventional design features horizontal step surfaces. Designed for certain flow rates, it does not function satisfactorily at larger discharges. To improve this, layouts with inclined step surfaces, both downward and upward, are proposed. Computational fluid dynamics (CFD) modelling in 3D is performed to examine and compare their flow properties in the skimming flow. The results suggest that a shift from a downward to an upward layout leads to a gradual decrease in the flow velocity at the chute end; the latter exhibit higher energy dissipation efficiency. Moreover, equations are developed to estimate the velocity and energy loss. The flow velocity in the developing zone, described by a power law, shows a decline with an increase in the angle of inclination. The downward layout is subjected to somewhat higher risk of cavitation if implemented in a prototype. The extreme pressure loads acting upon an upward layout are larger, and a correlation is proposed for its prediction. On an inclined surface, either upward or downward, the pressure demonstrates an S-shaped distribution. On a vertical surface, the flow pressure increases, after an initial decline over a short distance, towards the chute bottom.

Place, publisher, year, edition, pages
MDPI, 2020
Keywords
stepped chute, inclined step, cavitation, energy loss, CFD
National Category
Mechanical Engineering
Identifiers
urn:nbn:se:kth:diva-285608 (URN)10.3390/app10186202 (DOI)000580424700001 ()2-s2.0-85091695020 (Scopus ID)
Note

QC 20201111

Available from: 2020-11-11 Created: 2020-11-11 Last updated: 2023-05-10Bibliographically approved

Open Access in DiVA

fulltext(21238 kB)2003 downloads
File information
File name SUMMARY01.pdfFile size 21238 kBChecksum SHA-512
4dce271b2a626b266b71c8a73bfd65b1bb5bce586aaeb593f707b327901f6db71571945b0535b61ea6a14a7ca9812e46a617967740532ae920a529b35bc404d1
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Li, Shicheng
By organisation
Concrete Structures
Civil Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 0 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 516 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf