kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Let’s face it: Probabilistic multi-modal interlocutor-aware generation of facial gestures in dyadic settings
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Speech, Music and Hearing, TMH.ORCID iD: 0000-0003-3687-6189
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0001-9838-8848
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Speech, Music and Hearing, TMH.ORCID iD: 0000-0002-1643-1054
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Speech, Music and Hearing, TMH.ORCID iD: 0000-0003-1399-6604
2020 (English)In: IVA '20: Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents, Association for Computing Machinery (ACM), 2020Conference paper, Published paper (Refereed)
Abstract [en]

To enable more natural face-to-face interactions, conversational agents need to adapt their behavior to their interlocutors. One key aspect of this is generation of appropriate non-verbal behavior for the agent, for example, facial gestures, here defined as facial expressions and head movements. Most existing gesture-generating systems do not utilize multi-modal cues from the interlocutor when synthesizing non-verbal behavior. Those that do, typically use deterministic methods that risk producing repetitive and non-vivid motions. In this paper, we introduce a probabilistic method to synthesize interlocutor-aware facial gestures ś represented by highly expressive FLAME parameters ś in dyadic conversations. Our contributions are: a) a method for feature extraction from multi-party video and speech recordings, resulting in a representation that allows for independent control and manipulation of expression and speech articulation in a 3D avatar; b) an extension to MoGlow, a recent motion-synthesis method based on normalizing flows, to also take multi-modal signals from the interlocutor as input and subsequently output interlocutor-aware facial gestures; and c) a subjective evaluation assessing the use and relative importance of the different modalities in the synthesized output. The results show that the model successfully leverages the input from the interlocutor to generate more appropriate behavior. Videos, data, and code are available at: https://jonepatr.github.io/lets_face_it/

Place, publisher, year, edition, pages
Association for Computing Machinery (ACM), 2020.
Keywords [en]
non-verbal behavior, machine learning, facial expressions, adaptive agents
National Category
Human Computer Interaction
Identifiers
URN: urn:nbn:se:kth:diva-290561DOI: 10.1145/3383652.3423911ISI: 000728153600051Scopus ID: 2-s2.0-85096990068OAI: oai:DiVA.org:kth-290561DiVA, id: diva2:1529572
Conference
IVA '20: ACM International Conference on Intelligent Virtual Agents, Virtual Event, Scotland, UK, October 20-22, 2020
Funder
Swedish Foundation for Strategic Research , RIT15-0107Wallenberg AI, Autonomous Systems and Software Program (WASP)
Note

QC 20210222

Available from: 2021-02-18 Created: 2021-02-18 Last updated: 2022-09-23Bibliographically approved
In thesis
1. Scalable Methods for Developing Interlocutor-aware Embodied Conversational Agents: Data Collection, Behavior Modeling, and Evaluation Methods
Open this publication in new window or tab >>Scalable Methods for Developing Interlocutor-aware Embodied Conversational Agents: Data Collection, Behavior Modeling, and Evaluation Methods
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This work presents several methods, tools, and experiments that contribute to the development of interlocutor-aware Embodied Conversational Agents (ECAs). Interlocutor-aware ECAs take the interlocutor's behavior into consideration when generating their own non-verbal behaviors. This thesis targets the development of such adaptive ECAs by identifying and contributing to three important and related topics:

1) Data collection methods are presented, both for large scale crowdsourced data collection and in-lab data collection with a large number of sensors in a clinical setting. Experiments show that experts deemed dialog data collected using a crowdsourcing method to be better for dialog generation purposes than dialog data from other commonly used sources. 2) Methods for behavior modeling are presented, where machine learning models are used to generate facial gestures for ECAs. Both methods for single speaker and interlocutor-aware generation are presented. 3) Evaluation methods are explored and both third-party evaluation of generated gestures and interaction experiments of interlocutor-aware gestures generation are being discussed. For example, an experiment is carried out investigating the social influence of a mimicking social robot. Furthermore, a method for more efficient perceptual experiments is presented. This method is validated by replicating a previously conducted perceptual experiment on virtual agents, and shows that the results obtained using this new method provide similar insights (in fact, it provided more insights) into the data, simultaneously being more efficient in terms of time evaluators needed to spend participating in the experiment. A second study compared the difference between performing subjective evaluations of generated gestures in the lab vs. using crowdsourcing, and showed no difference between the two settings. A special focus in this thesis is given to using scalable methods, which allows for being able to efficiently and rapidly collect interaction data from a broad range of people and efficiently evaluate results produced by the machine learning methods. This in turn allows for fast iteration when developing interlocutor-aware ECAs behaviors.

Abstract [sv]

Det här arbetet presenterar ett flertal metoder, verktyg och experiment som alla bidrar till utvecklingen av motparts-medvetna förkloppsligade konversationella agenter, dvs agenter som kommunicerar med språk, har en kroppslig representation (avatar eller robot) och tar motpartens beteenden i beaktande när de genererar sina egna icke-verbala beteenden. Den här avhandlingen ämnar till att bidra till utvecklingen av sådana agenter genom att identifiera och bidra till tre viktiga områden:

Datainstamlingsmetoder  både för storskalig datainsamling med hjälp av så kallade "crowdworkers" (en stor mängd personer på internet som används för att lösa ett problem) men även i laboratoriemiljö med ett stort antal sensorer. Experiment presenteras som visar att t.ex. dialogdata som samlats in med hjälp av crowdworkers är bedömda som bättre ur dialoggenereringspersiktiv av en grupp experter än andra vanligt använda datamängder som används inom dialoggenerering. 2) Metoder för beteendemodellering, där maskininlärningsmodeller används för att generera ansiktsgester. Såväl metoder för att generera ansiktsgester för en ensam agent och för motparts-medvetna agenter presenteras, tillsammans med experiment som validerar deras funktionalitet. Vidare presenteras även ett experiment som undersöker en agents sociala påverkan på sin motpart då den imiterar ansiktsgester hos motparten medan de samtalar. 3) Evalueringsmetoder är utforskade och en metod för mer effektiva perceptuella experiment presenteras. Metoden är utvärderad genom att återskapa ett tidigare genomfört experiment med virtuella agenter, och visar att resultaten som fås med denna nya metod ger liknande insikter (den ger faktiskt fler insikter), samtidigt som den är effektivare när det kommer till hur mycket tid utvärderarna behövde spendera. En andra studie studerar skillnaden mellan att utföra subjektiva utvärderingar av genererade gester i en laboratoriemiljö jämfört med att använda crowdworkers, och visade att ingen skillnad kunde uppmätas. Ett speciellt fokus ligger på att använda skalbara metoder, då detta möjliggör effektiv och snabb insamling av mångfasetterad interaktionsdata från många olika människor samt evaluaring av de beteenden som genereras från maskininlärningsmodellerna, vilket i sin tur möjliggör snabb iterering i utvecklingen.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2022. p. 77
Series
TRITA-EECS-AVL ; 2022:15
Keywords
non-verbal behavior generation, interlocutor-aware, data collection, behavior modeling, evaluation methods
National Category
Computer Systems
Research subject
Speech and Music Communication
Identifiers
urn:nbn:se:kth:diva-309467 (URN)978-91-8040-151-7 (ISBN)
Public defence
2022-03-25, U1, https://kth-se.zoom.us/j/62813774919, Brinellvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Note

QC 20220307

Available from: 2022-03-07 Created: 2022-03-03 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Jonell, PatrikKucherenko, TarasHenter, Gustav EjeBeskow, Jonas

Search in DiVA

By author/editor
Jonell, PatrikKucherenko, TarasHenter, Gustav EjeBeskow, Jonas
By organisation
Speech, Music and Hearing, TMHRobotics, Perception and Learning, RPL
Human Computer Interaction

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 187 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf