kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Spatiotemporal dissection of the cell cycle with single-cell proteogenomics
KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics.ORCID iD: 0000-0003-0750-1070
KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics.ORCID iD: 0000-0002-5326-7134
KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics.ORCID iD: 0000-0001-6566-3559
KTH, Centres, Science for Life Laboratory, SciLifeLab. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Cellular and Clinical Proteomics.ORCID iD: 0000-0002-7692-1100
Show others and affiliations
2021 (English)In: Nature, ISSN 0028-0836, E-ISSN 1476-4687, Vol. 590, no 7847Article in journal (Refereed) Published
Abstract [en]

Spatial and temporal variations among individual human cell proteomes are comprehensively mapped across the cell cycle using proteomic imaging and transcriptomics. The cell cycle, over which cells grow and divide, is a fundamental process of life. Its dysregulation has devastating consequences, including cancer(1-3). The cell cycle is driven by precise regulation of proteins in time and space, which creates variability between individual proliferating cells. To our knowledge, no systematic investigations of such cell-to-cell proteomic variability exist. Here we present a comprehensive, spatiotemporal map of human proteomic heterogeneity by integrating proteomics at subcellular resolution with single-cell transcriptomics and precise temporal measurements of individual cells in the cell cycle. We show that around one-fifth of the human proteome displays cell-to-cell variability, identify hundreds of proteins with previously unknown associations with mitosis and the cell cycle, and provide evidence that several of these proteins have oncogenic functions. Our results show that cell cycle progression explains less than half of all cell-to-cell variability, and that most cycling proteins are regulated post-translationally, rather than by transcriptomic cycling. These proteins are disproportionately phosphorylated by kinases that regulate cell fate, whereas non-cycling proteins that vary between cells are more likely to be modified by kinases that regulate metabolism. This spatially resolved proteomic map of the cell cycle is integrated into the Human Protein Atlas and will serve as a resource for accelerating molecular studies of the human cell cycle and cell proliferation.

Place, publisher, year, edition, pages
Springer Nature , 2021. Vol. 590, no 7847
National Category
Cell and Molecular Biology
Identifiers
URN: urn:nbn:se:kth:diva-291958DOI: 10.1038/s41586-021-03232-9ISI: 000621583600020PubMedID: 33627808Scopus ID: 2-s2.0-85101540882OAI: oai:DiVA.org:kth-291958DiVA, id: diva2:1540141
Note

Correction in DOI 10.1038/s41586-022-05180-4

QC 20210324

Available from: 2021-03-26 Created: 2021-03-26 Last updated: 2024-04-05Bibliographically approved
In thesis
1. The spatiotemporal protein landscape of human cells
Open this publication in new window or tab >>The spatiotemporal protein landscape of human cells
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis focuses on the spatiotemporal mapping of proteins at a subcellular level. In other words, determining the cellular location of proteins over time. From a biological point of view, knowledge about protein location is fundamental to understand protein function. In the longer run, this also means better understanding of cells in the context of health and disease, since protein malfunction and mislocalization are two important factors during disease development. 

Using an antibody-based imaging approach, Paper I contains a subcellular map of 12 003 protein in 30 different cellular structures, freely accessible as part of the Human Protein Atlas (www.proteinatlas.org). Apart from enabling exploration of the organellar proteomes, we conclude that half of the human proteins localize to multiple compartments, and that almost one fifth display cell-to-cell variations in terms of protein expression. Paper II aimed to decrease the cumbersome work of manual protein location annotations by leveraging the power of the crowd through citizen science. By integrating the image-classification task into a video game with a massive player base, EVE online, protein location labels could be efficiently and rapidly assessed compared to manual curation from a few experts. To compare the performance of the players, a deep learning classifier was developed. The algorithm was capable of classifying protein location in images containing several challenging localization problems, such as multilocalizing proteins, cell line variations and rare classes. Using the protein location data from Paper I and Paper II, Paper III presents an image-based characterization of the nucleolar proteome. In total, 1 318 nucleolar proteins are included, of which 157 localizes to a fourth nucleolar compartment, the nucleolar rim. Additionally, 65 proteins were detected on the chromosomal periphery during mitosis, and these could be further divided into two recruitment phenotypes with different temporal profiles. Also, the mitotic chromosome proteins are enriched for intrinsically disordered domains, suggesting liquid-like properties of the perichromosomal layer. Paper IV presents a systematic dissection of the variable proteome drafted in Paper I. We show evidence for 539 proteins being correlated to cell cycle variations, of which a minority are also cycling at a transcriptional level, suggesting protein regulation at a translational or post-translational level. Additionally, we detected hundreds of proteins with previously unknown relations to mitosis and the cell cycle, many being linked to proliferation and oncogenic functions.

In conclusion, Paper I and Paper II provide a basis for further in-depth studies of proteins at a subcellular level, while Paper III and Paper IV show how this resource can be used to study proteins in space and time. The results enable system-level investigation of protein dynamics, as well as provide exciting insights into organellar organization, such as the nucleolus.

Abstract [sv]

Den här avhandlingen fokuserar på spatiotemporal karakterisering av proteiner på subcellulär nivå. Med andra ord beskrivs proteiners lokalisation i cellen över tid. Kunskap om proteiners lokalisation är grundläggande för att bättre förstå proteiners funktion. I ett längre perspektiv ger det också bättre förståelse av både friska och sjuka celler, eftersom felfungerande proteiner och felaktig proteinlokalisation är två faktorer som driver sjukdomsutveckling framåt.

Som en del av Human Protein Atlas-projektet (www.proteinatlas.org), innehåller Artikel I en subcellulär karta över 12 003 proteiner i 30 stycken olika organeller som kartlagts med hjälp av antikroppsbaserad mikroskopi. Utöver att ge en överblick över de olika organellproteomen, kunde vi också konstatera att hälften av alla proteiner lokaliserar till mer än en cellstruktur, samt att nästan en femtedel uppvisar skillnader i uttryck mellan celler. Målet i Artikel II var att minska arbetstiden för manuell annotering av proteinlokalisation genom att låta tusentals datorspelare i ett medborgarforskningsprojekt bidra. En bildklassificeringuppgift integrerades i datorspelet EVE online. Tack vare detta kunde proteinernas lokalisation snabbt och effektivt bestämmas, till skillnad från manuell annotering utförd av ett fåtal experter. För att utvärdera hur spelarna presterade, utvecklade vi samtidigt en klassificeringsalgoritm med hjälp av djup maskininlärning. Algoritmen visade sig kunna predicera proteinlokalisation i bilder trots att de innehöll flera försvårande omständigheter, såsom multilokaliserande proteiner, cellinjevariationer och ovanliga klasser. Med hjälp av proteinlokalisationerna från Artikel I och Artikel II, presenterar vi i Artikel III en bildbaserad karakterisering av nukleolens proteom. Sammanlagt visar vi data för 1 318 nukleolproteiner, varav 157 lokaliserar till en fjärde substruktur i gränsen mellan nukleolen och nukleoplasman. Vi visar även att 65 nukleolproteiner omlokaliseras till kromosomernas yta under celldelningen. Uttrycket av dessa proteiner kunde delas upp i två olika fenotyper baserat på när de tidsmässigt rekryteras till kromosomerna under mitosen. Förekomsten av oordnade proteindomäner var överrepresenterade i denna proteingrupp, något som öppnar upp för spekulationer om potentiella vätskeliknande egenskaper av den mitotiska kromosomytan. Artikel IV beskriver en systematisk genomgång av de varierande proteinerna som påträffats i Artikel I. 539 proteiners uttrycksvariation kunde kopplas till cellcykeln, varav en minoritet också varierar på transkriptnivå. Detta resultat indikerar att proteinreglering sker translationellt eller post-translationellt. Vi presenterar även data för hundratals proteiner som tidigare inte haft en känd koppling till cellcykeln, varav många kan relateras till proliferation och onkogenetiska funktioner.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. p. 52
Series
TRITA-CBH-FOU ; 2021:45
Keywords
Spatial proteomics, Immunofluorescence, Human Protein Atlas, Nucleolus, Cell cycle, Citizen science
National Category
Cell and Molecular Biology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-303152 (URN)978-91-8040-014-5 (ISBN)
Public defence
2021-11-12, K1, Teknikringen 56, Zoom: https://kth-se.zoom.us/j/67398971556?pwd=K3ZNM1I1T1Z6Y0RyLzExMUF6OHUvUT09, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 2021-10-12

Available from: 2021-10-12 Created: 2021-10-08 Last updated: 2022-06-25Bibliographically approved
2. Finding order in chaos: Dissecting single-cell heterogeneity in space and time
Open this publication in new window or tab >>Finding order in chaos: Dissecting single-cell heterogeneity in space and time
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The cell is the smallest unit of life and contains DNA, RNA, proteins and a variety of other macromolecules. In recent years, technological advances in the field of single cell biology have revealed a staggering amount of phenotypic heterogeneity between cells in a population, which were previously considered homogenous. Previous work has largely been focused on studies of RNA. As proteins however are the ultimate effectors of genetic information, this thesis aims to provide a protein-centered view on cellular heterogeneity, particularly focusing on cell cycle and cellular metabolism.

Most of my work has been performed within the framework of the Human Protein Atlas project. In the context of this project, we mapped the spatial distribution of more than 13.000 human proteins with subcellular resolution and found that around a quarter of all human proteins exhibit protein expression heterogeneity.

In Paper I, we hypothesized that a majority of the observed cellular heterogeneity can be explained by differences in cell cycle progression. Therefore, we generated a map of proteomic and transcriptomic heterogeneity at subcellular resolution, which we precisely aligned to the cell cycle position of individual cells. This approach allowed us to identify hundreds of previously unknown cell cycle-related proteins. With sustained proliferative signaling representing a hallmark of cancer, novel cell-cycle proteins could serve as potential new drug targets against cancer. We further show that a large part of cell cycle dependent proteome variability is not established by transcriptomic cycling. This suggests that post-translational modifications are a major contributor to the regulation of cell cycle dependent protein level changes. Therefore, in Paper II, we carried out a deep phosphoproteome mass spectrometry profiling of the same cellular model as in Paper I and identified almost 5,000 cell cycle dependent phosphosites on over 2,000 proteins. The unprecedented scale of our phosphoproteomic data allows us to link cell cycle dependent protein expression dynamics to phosphorylation events. Furthermore, we identify a large set of proteins with stable expression levels and fluctuating phosphorylation patterns along cell cycle progression that likely alters protein function.

Despite identifying hundreds of novel cell cycle dependent proteins in paper I, we observed that the majority of heterogeneously expressed proteins display variable expression independent of cell cycle progression, among them a large number of metabolic enzymes. Thus, we sought to describe the extent of subcellular metabolic complexity in human cells and tissues in Paper III. While we confirm metabolic compartmentalization in our dataset, we show that around 50% of metabolic enzymes localize to multiple cellular compartments. By integrating public protein-protein interaction data with our subcellular location information, we identify several enzymes with novel compartment-specific functions. Additionally, we observe a strongly elevated number of heterogeneously expressed enzymes compared to the background of the human proteome that is largely independent of cell cycle progression. We show that this heterogeneity can be manifested in the lineage of a single cell and is conserved in situ. To conclude, we suggest that the extensive metabolic heterogeneity can establish functional metabolic states in a population of human cells.

Finally, in Paper IV, we assessed the heterogeneity of the mitochondrial proteome as they are metabolic powerhouses containing an elevated number of cell cycle independent variably expressed proteins. In this study, we correlated the variable expression of over 400 mitochondrial proteins to the expression of rate limiting enzymes in important mitochondrial pathways; such as the TCA cycle and ROS metabolism. We show that enzymes in the same pathways often correlate in their expression, indicating that their expression variability may contribute to the establishment of metabolic states.

Altogether, the thesis illuminates the spatiotemporal complexity of the human proteome established by protein multilocalization and expression heterogeneity as fundamental non-genetic means of functional cell regulation.

Abstract [sv]

Cellen är den minsta enheten av liv, och varje cell innehåller en komplex uppsättning av DNA, RNA, proteiner och andra makromolekyler. Under de senaste åren har teknologiska framsteg inom cellbiologiska studier av enskilda celler avslöjat en överväldigande mängd fenotypisk heterogenitet mellan cellpopulationer som tidigare betraktades som homogena. Tidigare kartläggning av denna heterogenitet har främst fokuserat på studier av RNA. Denna avhandling syftar dock till att ge en proteincentrerad syn på cellulär variabilitet, med särskilt fokus på cellcykeln och cellulär metabolism.

Det mesta av mitt arbete innefattar data från Human Protein Atlas-projektet. I detta projekt har vi kartlagt den spatiala fördelningen av över 13 000 mänskliga proteiner med subcellulär upplösning. Vi finner att ungefär en fjärdedel av alla mänskliga proteiner uppvisar heterogenitet i proteinuttryck mellan enskilda celler.

I Artikel I undersökte vi hypotesen att majoriteten av den observerade cellulära heterogeniteten kan förklaras av skillnader i cellcykelprogression. Därför genererade vi en stor karta över proteomisk och transkriptomisk uttrycksdata i relation till den mänskliga cellcykeln i enskilda celler. Vi identifierade hundratals nya proteiner relaterade till cellcykeln, vilka kan komma att fungera som potentiella läkemedelsmål vid sjukdomar som cancer. Vi visar vidare att en stor del av den cellcykelberoende variabiliteten på proteinnivå inte etableras genom cykliska ändringar av transkriptomet. Detta antyder att posttranslationella modifieringar i betydande utsträckning bidrar till regleringen av dynamiska förändringar i proteinuttryck under cellcykeln.

Därför utförde vi i Artikel II en djup masspektrometriprofilering av fosfoproteomet längs samma cellulära modell som i Artikel I och identifierade över 2000 cellcykelberoende fosforyleringsplatser hos människans proteiner. Den oöverträffade omfattningen av denna fosfoproteomiska data gör att vi kan koppla cellcykelberoende dynamik i proteinuttryck till fosforyleringshändelser. Dessutom identifierar vi en stor uppsättning proteiner med stabila uttrycksnivåer och varierande fosforyleringsmönster längs cellcykelns progression, vilket sannolikt reglerar deras funktion.

I Artikel I observerade vi också att majoriteten av heterogent uttryckta proteiner visar variation som är oberoende av cellcykelprogression, och bland dessa proteiner finns ett stort antal metaboliska enzymer. Därför strävade vi efter att beskriva omfattningen av subcellulär metabolisk komplexitet hos mänskliga celler och vävnader i Artikel III. Samtidigt som vi bekräftar att det finns en spatiell uppdelning av cellulära metaboliska processer visar vi att ungefär 50% av de metaboliska enzymerna lokaliserar till flera subcellulära avdelningar. Genom att integrera offentliga protein-protein-interaktionsdata med vår information om subcellulär lokalisering identifierar vi flera enzymer som utför olika funktioner i olika cellulära avdelningar. Dessutom observerar vi en starkt ökad mängd heterogent uttryckta enzymer. Vi föreslår att denna omfattande metaboliska heterogenitet kan etablera olika funktionella metabola tillstånd i en population av mänskliga celler.

Slutligen utvärderade vi i Artikel IV heterogeniteten hos det mitokondriella proteomet eftersom de är metabola kraftverk som innehåller en stor andel proteiner vars uttryck varierar beroende av cellcykeln. I denna studie korrelerade vi det variabla uttrycket av över 400 mitokondriella proteiner med uttrycket av hastighetsbegränsande enzymer i viktiga mitokondriella processer, såsom citronsyracykeln och metabolism av reaktiva syreföreningar. Vi visar att enzymer i samma reaktionsvägar ofta korrelerar i sitt uttryck, vilket indikerar att deras uttrycksvariabilitet kan bidra till etableringen av metabola tillstånd.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. p. 49
Series
TRITA-CBH-FOU ; 2024:12
Keywords
non-genetic single-cell heterogeneity, cell cycle, metabolism, imaging-based subcellular proteomics, phosphoproteomics, icke-genetisk single-cell heterogenitet, cellcykel, metabolism, bildbaserad subcellulär proteomik, fosfoproteomik
National Category
Medical Biotechnology (with a focus on Cell Biology (including Stem Cell Biology), Molecular Biology, Microbiology, Biochemistry or Biopharmacy)
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-344949 (URN)978-91-8040-892-9 (ISBN)
Public defence
2024-05-03, Air&Fire, Science for Life Laboratory, Tomtebodavägen 23, via Zoom: https://kth-se.zoom.us/j/64135640770, Solna, 10:00 (English)
Opponent
Supervisors
Note

QC 2024-04-08

Available from: 2024-04-08 Created: 2024-04-05 Last updated: 2024-04-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Mahdessian, DianaCesnik, Anthony J.Gnann, ChristianDanielsson, FridaStenström, LovisaArif, MuhammadZhang, ChengLe, TrangJohansson, FredricSchutten, RutgerBäckström, AnnaAxelsson, UlrikaThul, PeterUhlén, MathiasMardinoglu, AdilStadler, CharlotteAyoglu, BurcuSullivan, D. P.Lundberg, Emma

Search in DiVA

By author/editor
Mahdessian, DianaCesnik, Anthony J.Gnann, ChristianDanielsson, FridaStenström, LovisaArif, MuhammadZhang, ChengLe, TrangJohansson, FredricSchutten, RutgerBäckström, AnnaAxelsson, UlrikaThul, PeterUhlén, MathiasMardinoglu, AdilStadler, CharlotteAyoglu, BurcuSullivan, D. P.Lundberg, Emma
By organisation
Science for Life Laboratory, SciLifeLabCellular and Clinical ProteomicsSystems Biology
In the same journal
Nature
Cell and Molecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 528 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf