kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Component ranking and importance indices in the distribution system
KTH, School of Electrical Engineering and Computer Science (EECS).ORCID iD: 0000-0002-6132-0222
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.ORCID iD: 0000-0001-7537-5577
Show others and affiliations
2021 (English)In: 2021 IEEE Madrid PowerTech, PowerTech 2021 - Conference Proceedings, Institute of Electrical and Electronics Engineers (IEEE) , 2021, article id 9494968Conference paper, Published paper (Refereed)
Abstract [en]

Monitoring the condition of components helps taking preventive actions to avoid failures, and increases reliability. However, performing such monitoring for all components of the distribution grid is prohibitively expensive. Instead, distribution system operators could focus efforts only on the most critical components. In particular, importance indices enable to prioritise components according to a chosen criterion, and to adapt monitoring strategies. This study presents methods to rank grid components using outage data. The importance indices are based on: 1) de-energisation time; 2) frequency of failures; 3) disconnected power; 4) energy not supplied and 5) customer outage time. The results depend largely on the time period of the outage data considered for analysis. Some components' rank varies with the chosen criterion. This indicates that they are critical with respect to a specific criterion. Other components are ranked high with all the methods, which means that they are critical, and need focused monitoring.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2021. article id 9494968
Keywords [en]
Customer outage time, de-energisation time, disconnected power, distribution system, Energy Not Supplied, failure, outages
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Identifiers
URN: urn:nbn:se:kth:diva-292207DOI: 10.1109/PowerTech46648.2021.9494968ISI: 000848778000217Scopus ID: 2-s2.0-85112365051OAI: oai:DiVA.org:kth-292207DiVA, id: diva2:1540176
Conference
2021 IEEE Madrid PowerTech, PowerTech 2021, 28 June 2021 through 2 July 2021
Note

QC 20220927

Part of proceedings: ISBN 978-1-6654-3597-0

Available from: 2021-03-26 Created: 2021-03-26 Last updated: 2024-03-17Bibliographically approved
In thesis
1. From data collection to electric grid performance: How can data analytics support asset management decisions for an efficient transition toward smart grids?
Open this publication in new window or tab >>From data collection to electric grid performance: How can data analytics support asset management decisions for an efficient transition toward smart grids?
2021 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

Physical asset management in the electric power sector encompasses the scheduling of the maintenance and replacement of grid components, as well as decisions about investments in new components. Data plays a crucial role in these decisions. The importance of data is increasing with the transformation of the power system and its evolution toward smart grids. This thesis deals with questions related to data management as a way to improve the performance of asset management decisions. Data management is defined as the collection, processing, and storage of data. Here, the focus is on the collection and processing of data.

First, the influence of data on the decisions related to assets is explored. In particular, the impacts of data quality on the replacement time of a generic component (a line for example) are quantified using a scenario approach, and failure modeling. In fact, decisions based on data of poor quality are most likely not optimal. In this case, faulty data related to the age of the component leads to a non-optimal scheduling of component replacement. The corresponding costs are calculated for different levels of data quality. A framework has been developed to evaluate the amount of investment needed into data quality improvement, and its profitability.

Then, the ways to use available data efficiently are investigated. Especially, the possibility to use machine learning algorithms on real-world datasets is examined. New approaches are developed to use only available data for component ranking and failure prediction, which are two important concepts often used to prioritize components and schedule maintenance and replacement.

A large part of the scientific literature assumes that the future of smart grids lies in big data collection, and in developing algorithms to process huge amounts of data. On the contrary, this work contributes to show how automatization and machine learning techniques can actually be used to reduce the need to collect huge amount of data, by using the available data more efficiently. One major challenge is the trade-offs needed between precision of modeling results, and costs of data management.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2021. p. 48
Series
TRITA-EECS-AVL ; 2021:22
Keywords
asset management, data analytics, data management, distribution system operators, electrical power grid, machine learning, real-world datasets
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering Other Civil Engineering Reliability and Maintenance
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-292323 (URN)978-91-7873-824-3 (ISBN)
Presentation
2021-04-19, Zoom video conference: https://kth-se.zoom.us/webinar/register/WN_Docj6Hq9Q1ywoV5jHzVAJw, 10:00 (English)
Opponent
Supervisors
Note

QC 20210330

Available from: 2021-03-30 Created: 2021-03-30 Last updated: 2022-06-25Bibliographically approved
2. Data management improvements in the electrical grid: a pathway to a smarter cyber-physical system
Open this publication in new window or tab >>Data management improvements in the electrical grid: a pathway to a smarter cyber-physical system
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Alternative title[sv]
Datahanteringsförbättringar i elnätet : en väg till ett smartare cyberfysiskt system
Abstract [en]

The current power system is a network of electrical components forming a physical system. It is experiencing changes, such as the deployment of electric vehicles and distributed energy sources. Meanwhile, cybernetworks are becoming coupled into the physical grid to an increasing degree. This transformation of electrical grids into smart grids is often the focus of research literature. It is strongly linked to the concurrent evolution of the cyberinfrastructure, which is the focus of this thesis. It aims to support the incremental upgrade of data systems, taking real-world constraints into account, as well as opportunities offered by sensors and machine learning. With this background, two research questions have been identified: i) How to use available data more efficiently to improve asset management? and ii) How much and which kind of new data are actually needed?

With regard to the first research question, ways to use available data more efficiently are investigated in collaboration with a distribution system operator (DSO). One option is for DSOs to adopt best practices in terms of data management, which include: de-silo data, enhance reporting practices, and automatize tasks. To illustrate how combining available data may deliver additional relevant information, criticality indices have been calculated and assigned to components of a substation, by combining outage data, operation data and network diagram. Another option is to develop machine learning algorithms to perform specific or new tasks. A failure warning system has been developed using machine learning to leverage existing data about power components. It provides component-specific red flags, in situations where the widespread installation of component-specific sensors is unrealistic.

With regard to the second research question, a methodology has been developed to identify which data are actually needed. The approach is scenario-based, and formalizes mathematically the relations between data, grid management and grid performance. It has been applied in three studies. One study uses the methodology to explore impacts of data quality on grid management costs, and to evaluate the most profitable amount of investment needed into data quality improvement. Another study provides a tool to evaluate the profitability of investments in condition-monitoring sensors. A third study investigates how data granularity affects decisions in grid upgrades, and ultimately the quality of power supply, and proposes a way to decide where, how, and how much to upgrade the cyberinfrastructure.

In summary, this thesis: i) shows the importance of data for grid performance; ii) conceptualizes, formalizes mathematically, and quantifies relations between data, grid management, and grid performance; iii) develops new approaches to support the transformation of the cyberinfrastructure needed for a transition to smart grids.

Abstract [sv]

Det nuvarande kraftsystemet är ett nät av elektriska apparater som utgör ett fysiskt system. Det upplever förändringar, till exempel ökande antal elfordon och distribuerade energikällor. Samtidigt kopplas cybernätverk in i det fysiska nätet i allt högre grad. Dessa förändringar förvandlar elnätet till ett smart nät som är ofta i fokus för forskningslitteraturen. Den omvandlingen är starkt kopplat till den samtidiga utvecklingen av cyberinfrastrukturen, som är fokus för denna avhandling. Det syftar till att stödja den stegvisa uppgraderingen av datasystem, med hänsyn till verkliga begränsningar, såväl som möjligheter som sensorer och maskininlärning erbjuder. Med denna bakgrund har två forskningsfrågor identifierats: i) Hur kan man använda tillgängliga data mer effektivt för att förbättra nätförvaltning? och ii) Hur mycket och vilken typ av nya data behövs egentligen?

När det gäller den första forskningsfrågan undersöks sätt att använda till-gängliga data mer effektivt i samarbete med en elnätsägare. Ett alternativ är att elnätsägare använder erkänt välfungerande metoder när det gäller datahantering, som inkluderar: kombinera data från olika källor, förbättra rapporteringsmetoder och automatisera uppgifter. För att illustrera hur en kombination av tillgängliga data kan ge ytterligare relevant information, har kritikalitetsindex beräknats och tilldelats komponenter i en transformatorstation genom att kombinera avbrottsdata, driftdata och nätstruktur. Ett annat alternativ är att utveckla maskininlärningsalgoritmer för att genomföra specifika eller nya uppgifter. Ett felvarningssystem har utvecklats med hjälp av maskininlärning för att utnyttja befintliga data om elkraftapparater. Det ger apparatspecifika röda flaggor, i situationer  där en utbredda installation av särskilda sensorer är orealistisk.

När det gäller den andra forskningsfrågan har en metodik utvecklats för att identifiera vilka data som faktiskt behövs. Tillvägagångssättet är scenariobaserat och formaliserar matematiska relationer mellan data, näthantering och nätprestanda. Det har tillämpats i tre studier. En studie använder metoden för att undersöka inverkan av datakvalitet på nätförvaltningskostnader och för att identifiera det mest lönsamma investeringsbeloppet för datakvaliteten förbättring. En annan studie föreslår ett verktyg för att utvärdera lönsamheten för investeringar i tillståndsövervakningssensorer. En tredje studie utreder hur datagranularitet påverkar beslut om nätuppgraderingar  , och i slutändan kvaliteten på strömförsörjningen, och föreslår ett sätt att bestämma var, hur och hur mycket cyberinfrastrukturen ska uppgraderas.

Denna avhandling: i) visar betydelsen av data för nätprestanda ; ii) konceptualiserar, formaliserar matematiskt och kvantifierar relationer mellan data, näthantering samt nätprestanda; iii) utvecklar nya metoder för att stödja omvandlingen av den cyberinfrastruktur som behövs för en övergång till smarta nät.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. p. 67
Series
TRITA-EECS-AVL ; 2024:27
Keywords
asset management, data management, data analytics, distribution, grid operation and planning, machine learning, cyberinfrastructure upgrade
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-344438 (URN)978-91-8040-866-0 (ISBN)
Public defence
2024-04-08, F3 (Flodis), Lindstedtsvägen 26, Stockholm, 10:00
Opponent
Supervisors
Funder
SweGRIDS - Swedish Centre for Smart Grids and Energy Storage
Note

QC 20240321

Available from: 2024-03-21 Created: 2024-03-17 Last updated: 2024-03-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Nalini Ramakrishna, Sindhu KanyaKoziel, Sylvie EvelyneHilber, Patrik

Search in DiVA

By author/editor
Nalini Ramakrishna, Sindhu KanyaKoziel, Sylvie EvelyneHilber, Patrik
By organisation
School of Electrical Engineering and Computer Science (EECS)Electromagnetic Engineering
Other Electrical Engineering, Electronic Engineering, Information Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 258 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf