kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
3DBodyTex: Textured 3D body dataset
Show others and affiliations
2018 (English)In: Proceedings - 2018 International Conference on 3D Vision, 3DV 2018, Institute of Electrical and Electronics Engineers (IEEE) , 2018, p. 495-504Conference paper, Published paper (Refereed)
Abstract [en]

In this paper, a dataset, named 3DBodyTex, of static 3D body scans with high-quality texture information is presented along with a fully automatic method for body model fitting to a 3D scan. 3D shape modelling is a fundamental area of computer vision that has a wide range of applications in the industry. It is becoming even more important as 3D sensing technologies are entering consumer devices such as smartphones. As the main output of these sensors is the 3D shape, many methods rely on this information alone. The 3D shape information is, however, very high dimensional and leads to models that must handle many degrees of freedom from limited information. Coupling texture and 3D shape alleviates this burden, as the texture of 3D objects is complementary to their shape. Unfortunately, high-quality texture content is lacking from commonly available datasets, and in particular in datasets of 3D body scans. The proposed 3DBodyTex dataset aims to fill this gap with hundreds of high-quality 3D body scans with high-resolution texture. Moreover, a novel fully automatic pipeline to fit a body model to a 3D scan is proposed. It includes a robust 3D landmark estimator that takes advantage of the high-resolution texture of 3DBodyTex. The pipeline is applied to the scans, and the results are reported and discussed, showcasing the diversity of the features in the dataset. 

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2018. p. 495-504
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:kth:diva-287042DOI: 10.1109/3DV.2018.00063ISI: 000449774200052Scopus ID: 2-s2.0-85056789962OAI: oai:DiVA.org:kth-287042DiVA, id: diva2:1555306
Conference
6th International Conference on 3D Vision, 3DV 2018, 5 September 2018 - 8 September 2018
Note

QC 20210604

Available from: 2021-05-18 Created: 2021-05-18 Last updated: 2024-03-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ottersten, Björn

Search in DiVA

By author/editor
Ottersten, Björn
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 18 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf