kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Joint Forecasting and Interpolation of Time-Varying Graph Signals Using Deep Learning
University of Luxembourg, Luxembourg, Luxembourg.ORCID iD: 0000-0003-2298-6774
2020 (English)In: IEEE Transactions on Signal and Information Processing over Networks, ISSN 2373776X, Vol. 6, p. 761-773, article id 9268114Article in journal (Refereed) Published
Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2020. Vol. 6, p. 761-773, article id 9268114
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:kth:diva-295055DOI: 10.1109/TSIPN.2020.3040042ISI: 000602998800001Scopus ID: 2-s2.0-85097204054OAI: oai:DiVA.org:kth-295055DiVA, id: diva2:1555365
Note

QC 20210601

Available from: 2021-05-18 Created: 2021-05-18 Last updated: 2023-07-31Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ottersten, Björn

Search in DiVA

By author/editor
Ottersten, Björn
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 55 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf