kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nanogel encapsulated hydrogels as advanced wound dressings for the controlled delivery of antibiotics
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.ORCID iD: 0000-0001-7639-1173
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Coating Technology.ORCID iD: 0000-0001-9035-7078
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.ORCID iD: 0000-0002-9597-9578
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology.
Show others and affiliations
2021 (English)In: Advanced Functional Materials, ISSN 1616-301X, Vol. 31Article in journal (Refereed) Published
Abstract [en]

Biocompatible and degradable dual-delivery gel systems based on hyperbrancheddendritic−linear−dendritic copolymers (HBDLDs) is herein conceptualizedand accomplished via thiol-ene click chemistry. The elasticity of thehydrogels is tunable by varying the lengths of PEG (2, 6, 10 kDa) or the dryweight percentages (20, 30, 40 wt%), and are found to be between 2–14.7 kPa,comparable to human skin. The co-delivery of antibiotics is achieved, wherethe hydrophilic drug novobiocin sodium salt (NB) is entrapped within thehydrophilic hydrogel, while the hydrophobic antibiotic ciprofloxacin (CIP) isencapsulated within the dendritic nanogels (DNGs) with hydrophobic cores(DNGs-CIP). The DNGs-CIP with drug loading capacity of 2.83 wt% are thenphysically entrapped within the hybrid hydrogels through UV curing. Thehybrid hydrogels enabled the quick release of NB and prolonged released ofCIP. In vitro cell infection assays showed that the antibiotic-loaded hybridhydrogels are able to treat bacterial infections with significant bacterialreduction. Hybrid hydrogel band aids are fabricated and exhibited betterantibacterial activity compared with commercial antimicrobial band aids.Remarkably, most hydrogels and hybrid hydrogels showed enhanced humandermal cell proliferation and could be degraded into non-toxic constituents,showing great promise as wound dressing materials.

Place, publisher, year, edition, pages
2021. Vol. 31
National Category
Natural Sciences
Research subject
Fibre and Polymer Science; Chemical Engineering
Identifiers
URN: urn:nbn:se:kth:diva-293758DOI: 10.1002/adfm.202006453Scopus ID: 2-s2.0-85094644501OAI: oai:DiVA.org:kth-293758DiVA, id: diva2:1556585
Note

QC 20210623

Available from: 2021-05-23 Created: 2021-05-23 Last updated: 2022-06-25Bibliographically approved
In thesis
1. The synthesis of dendritic hydrogels and inorganic nanoparticles and their application as antibacterial and imaging materials
Open this publication in new window or tab >>The synthesis of dendritic hydrogels and inorganic nanoparticles and their application as antibacterial and imaging materials
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Abstract

The overuse and misuse of conventional antibiotics has caused increased prevalence of drug-resistant bacteria, the infections of which cause high mortality and economic losses per year. It is therefore crucial to develop new technologies and treatments for infections caused by drug-resistant bacteria. Dendritic polymer-based hydrogels and nanomaterials have shown promise as alternatives to traditional small-molecule antibiotics.

Third generation (G3) allyl-functional hyperbranched dendritic-linear-dendritic copolymers (HBDLDs) based on polyethylene glycol (PEG) and 2,2-bis(hydroxymethyl) propionic acid (bis-MPA) were synthesized, and used to form hydrogels with a dithiol-functional PEG crosslinker using thiol-ene coupling (TEC). The hydrogels were used to co-deliver both hydrophilic and hydrophobic antibiotics with the aid of dendritic nanogels (DNGs). Antibacterial hydrogel band aids were also fabricated in a facile procedure.

Amino-functional HBDLDs based on PEG and bis-MPA were synthesized, and together with a di-N-hydroxysuccinimide-functional PEG as the crosslinker, amino-functional hydrogels with inherent antibacterial properties were fabricated. The cationic hydrogels are highly effective towards a wide range of wound-isolated bacteria, and can reduce inflammation and oxidative stress.

To minimize the cytotoxicity of amino-functional dendrimers, self-assembled hydrogels based on cationic dendrimers and cellulose nanofibrils were fabricated. Cationic dendrimers and their fragments can be released from the hydrogels to kill bacteria whilst showing insignificant cytotoxicity with human cells.

Bis-MPA dendrimers with both amino and allyl functionalities were also synthesized. Allyl groups can be used to form hydrogels with a dithiol-functional PEG crosslinker via TEC, and the amino groups provide the hydrogels with antibacterial properties.

Fluorescent silicon nanoparticles (SiNPs) were synthesized and their interaction with bacteria was investigated. SiNPs exhibited strong binding to Staphylococcus aureus (S. aureus), showing promise as a potential capturing and imaging agent for S. aureus.

Abstract [sv]

Sammanfattning

Överanvändning och missbruk av konventionell antibiotika har orsakat förekomsten av läkemedelsresistenta bakterier, detta har resulterat i mer aggressiva infektioner som orsakar hög dödlighet och stora ekonomiska kostnader varje år. Det är därför viktigt att utveckla nya tekniker för att behandla infektioner orsakade av dessa läkemedelsresistenta bakterier. Hydrogeler och nanomaterial baserade på dendritiska polymerer har visat stor potential som alternativ till traditionell antibiotika.

Allyl-funktionella hyperförgrenade dendritiska-linjära-dendritiska sampolymerer (HBDLD), baserade på polyetylenglykol (PEG) och 2,2-bis (hydroximetyl) propansyra (bis-MPA) av tredje generationen (G3), syntetiserades och användes för att bilda hydrogeler med en ditiolfunktionell PEG-tvärbindare via av tiol-en-koppling (TEC). Hydrogelerna användes för att leverera både hydrofil och hydrofob antibiotika med hjälp av dendritiska nanogeler (DNG). Plåster av den antibakteriella hydrogelen tillverkades också via en enkel procedur.

Aminfunktionella HBDLD baserade på PEG och bis-MPA syntetiserades och användes tillsammans med di-N-hydroxisuccinimid-funktionell PEG för att tillverka aminfunktionella hydrogeler med antibakteriella egenskaper. De katjoniska hydrogelerna är mycket effektiva mot ett brett spektrum av bakterier isolerade från sår och kan dessutom minska inflammation och oxidativ stress.

För att minimera cytotoxiciteten hos aminfunktionella dendrimerer tillverkades hydrogeler baserade på katjoniska dendrimerer och nanofibriller av cellulosa. De katjoniska dendrimererna och fragment från dem kan frigöras från hydrogelerna i koncentrationer som dödar bakterier men inte är toxiska för humana celler.

Bis-MPA dendrimerer med både amin- och allylfunktionella grupper syntetiserades också. Allylgrupperna kan användas för att bilda hydrogeler med en ditiolfunktionell PEG tvärbindare via TEC, och aminerna ger hydrogelerna antibakteriella egenskaper.

Fluorescerande kiselnanopartiklar (SiNP) syntetiserades och deras interaktion med bakterier undersöktes. SiNP uppvisade stark bindning till Staphylococcus aureus (S. aureus), vilket visar en lovande potential för användning som kontrastmedel eller för att fånga in dessa bakterier.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. p. 65
Series
TRITA-CBH-FOU ; 2021:27
Keywords
antibacterial hydrogels, dendritic polymers, dendrimers, silicon nanoparticles, cellulose nanofibrils, drug-resistant bacteria, wound dressings
National Category
Natural Sciences
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-295585 (URN)978-91-7873-898-4 (ISBN)
Public defence
2021-06-15, https://kth-se.zoom.us/j/67880817786, 10:00 (English)
Opponent
Supervisors
Note

QC 2021-05-24

Available from: 2021-05-24 Created: 2021-05-24 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Fan, YanmiaoLüchow, MadsZhang, YuningLin, JinjianMalkoch, MichaelFortuin, Lisa

Search in DiVA

By author/editor
Fan, YanmiaoLüchow, MadsZhang, YuningLin, JinjianMalkoch, MichaelFortuin, Lisa
By organisation
Coating TechnologyFibre- and Polymer Technology
Natural Sciences

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 326 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf