In this paper we investigate estimating the parameters of a discrete time networked virus spread model from time series data. We explore the effect of multiple challenges on the estimation process including system noise, missing data, time-varying network structure, and quantization of the measurements. We also demonstrate how well a heterogeneous model can be captured by homogeneous model parameters. We further illustrate these challenges by employing recent data collected from the ongoing 2019 novel coronavirus (2019-nCoV) outbreak, motivating future work.
Part of Proceedings: ISBN 978-1-7281-4085-8 978-1-7281-8831-7
QC 20211027