kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Coexistence of absolutely continuous and pure point spectrum for kicked quasiperiodic potentials
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Mathematics (Div.).ORCID iD: 0000-0003-4368-2833
Univ Cergy Pontoise, Dept Math, CNRS, UMR 8088, 2 Av Adolphe Chauvin, F-95302 Cergy Pontoise, France..
2021 (English)In: Journal of Spectral Theory, ISSN 1664-039X, E-ISSN 1664-0403, Vol. 11, no 3, p. 1215-1254Article in journal (Refereed) Published
Abstract [en]

We introduce a class of real analytic "peaky" potentials for which the corresponding quasiperiodic 1D-Schrodinger operators exhibit, for quasiperiodic frequencies in a set of positive Lebesgue measure, both absolutely continuous and pure point spectrum.

Place, publisher, year, edition, pages
European Mathematical Society - EMS - Publishing House GmbH , 2021. Vol. 11, no 3, p. 1215-1254
Keywords [en]
Spectral theory, smooth dynamics, quasi-periodic cocycles, reducibility of cocycles, Lyapunov exponents
National Category
Mathematical Analysis
Identifiers
URN: urn:nbn:se:kth:diva-303888DOI: 10.4171/JST/370ISI: 000704993600011Scopus ID: 2-s2.0-85116839193OAI: oai:DiVA.org:kth-303888DiVA, id: diva2:1604960
Note

QC 20211021

Available from: 2021-10-21 Created: 2021-10-21 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Bjerklöv, Kristian

Search in DiVA

By author/editor
Bjerklöv, Kristian
By organisation
Mathematics (Div.)
In the same journal
Journal of Spectral Theory
Mathematical Analysis

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 63 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf