kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A Framework for Integrating Gesture Generation Models into Interactive Conversational Agents
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Speech, Music and Hearing, TMH.
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0001-9838-8848
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Speech, Music and Hearing, TMH.
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Speech, Music and Hearing, TMH, Speech Communication and Technology.ORCID iD: 0000-0003-2428-0468
Show others and affiliations
2021 (English)Conference paper, Oral presentation with published abstract (Refereed)
Abstract [en]

Embodied conversational agents (ECAs) benefit from non-verbal behavior for natural and efficient interaction with users. Gesticulation – hand and arm movements accompanying speech – is an essential part of non-verbal behavior. Gesture generation models have been developed for several decades: starting with rule-based and ending with mainly data-driven methods. To date, recent end-to-end gesture generation methods have not been evaluated in areal-time interaction with users. We present a proof-of-concept

framework, which is intended to facilitate evaluation of modern gesture generation models in interaction. We demonstrate an extensible open-source framework that contains three components: 1) a 3D interactive agent; 2) a chatbot back-end; 3) a gesticulating system. Each component can be replaced,

making the proposed framework applicable for investigating the effect of different gesturing models in real-time interactions with different communication modalities, chatbot backends, or different agent appearances. The code and video are available at the project page https://nagyrajmund.github.io/project/gesturebot.

Place, publisher, year, edition, pages
2021.
Keywords [en]
conversational embodied agents; non-verbal behavior synthesis
National Category
Human Computer Interaction
Research subject
Computer Science
Identifiers
URN: urn:nbn:se:kth:diva-304616OAI: oai:DiVA.org:kth-304616DiVA, id: diva2:1609609
Conference
20th International Conference on Autonomous Agents and Multiagent Systems (AAMAS).
Funder
Swedish Foundation for Strategic Research, RIT15-0107
Note

QC 20211130

Not duplicate with DiVA 1653872

Available from: 2021-11-08 Created: 2021-11-08 Last updated: 2022-06-25Bibliographically approved
In thesis
1. Developing and evaluating co-speech gesture-synthesis models for embodied conversational agents
Open this publication in new window or tab >>Developing and evaluating co-speech gesture-synthesis models for embodied conversational agents
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

 A  large part of our communication is non-verbal:   humans use non-verbal behaviors to express various aspects of our state or intent.  Embodied artificial agents, such as virtual avatars or robots, should also use non-verbal behavior for efficient and pleasant interaction. A core part of non-verbal communication is gesticulation:  gestures communicate a large share of non-verbal content. For example, around 90\% of spoken utterances in descriptive discourse are accompanied by gestures. Since gestures are important, generating co-speech gestures has been an essential task in the Human-Agent Interaction (HAI) and Computer Graphics communities for several decades.  Evaluating the gesture-generating methods has been an equally important and equally challenging part of field development. Consequently, this thesis contributes to both the development and evaluation of gesture-generation models. 

This thesis proposes three deep-learning-based gesture-generation models. The first model is deterministic and uses only audio and generates only beat gestures.  The second model is deterministic and uses both audio and text, aiming to generate meaningful gestures.  A final model uses both audio and text and is probabilistic to learn the stochastic character of human gesticulation.  The methods have applications to both virtual agents and social robots. Individual research efforts in the field of gesture generation are difficult to compare, as there are no established benchmarks.  To address this situation, my colleagues and I launched the first-ever gesture-generation challenge, which we called the GENEA Challenge.  We have also investigated if online participants are as attentive as offline participants and found that they are both equally attentive provided that they are well paid.   Finally,  we developed a  system that integrates co-speech gesture-generation models into a real-time interactive embodied conversational agent.  This system is intended to facilitate the evaluation of modern gesture generation models in interaction. 

To further advance the development of capable gesture-generation methods, we need to advance their evaluation, and the research in the thesis supports an interpretation that evaluation is the main bottleneck that limits the field.  There are currently no comprehensive co-speech gesture datasets, which should be large, high-quality, and diverse. In addition, no strong objective metrics are yet available.  Creating speech-gesture datasets and developing objective metrics are highlighted as essential next steps for further field development.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2021. p. 47
Series
TRITA-EECS-AVL ; 2021:75
Keywords
Human-agent interaction, gesture generation, social robotics, conversational agents, non-verbal behavior, deep learning, machine learning
National Category
Human Computer Interaction
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-304618 (URN)978-91-8040-058-9 (ISBN)
Public defence
2021-12-07, Sal Kollegiesalen, Stockholm, 13:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research , RIT15-0107
Note

QC 20211109

Available from: 2021-11-10 Created: 2021-11-08 Last updated: 2022-06-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

https://www.ifaamas.org/Proceedings/aamas2021/pdfs/p1779.pdf

Authority records

Nagy, RajmundKucherenko, TarasMoell, BirgerAbelho Pereira, André TiagoKjellström, Hedvig

Search in DiVA

By author/editor
Nagy, RajmundKucherenko, TarasMoell, BirgerAbelho Pereira, André TiagoKjellström, Hedvig
By organisation
Speech, Music and Hearing, TMHRobotics, Perception and Learning, RPLSpeech Communication and Technology
Human Computer Interaction

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 157 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf