kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Earth Observation based Monitoring of Urbanizationand Environmental Impact in Kigali, Rwanda
KTH, School of Architecture and the Built Environment (ABE), Urban Planning and Environment, Geoinformatics. University of Rwanda.
2021 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Urbanization is one of the great challenges in the 21st century. Despite being an engine for the global economy, urban areas consume 78% of World's energy and emit more than 60% of greenhouse gas emission. Sub-SaharanAfrican cities, e.g. Kigali, are characterized by rapid population growth and accelerated land use/land cover change. Yet, the implementation of policies and regulations catalyzing sustainable urbanization is constrained by scarce and fragmented data related to land use/land cover spatial patterns and changes in population. Collected statistics are most of the time outdated,or geographically aggregated to large heterogeneous administrative entities, which is judged meaningless for informed decision making. Therefore, there is a need for timely and reliable data, and tools to monitor the spatio-temporal patterns of urbanization and its environmental impact for informed and sustainable decision making. The objectives of this thesis are i) to investigate the use of multi-temporal and multi-resolution Earth observation data for mapping and monitoring urbanization patterns and trends in Kigali, Rwanda, a complex urban area characterized by a subtropical highland climate; and ii) to analyze the environmental impacts of urbanization using the integration of land cover information classified from Earth observation data with landscape metrics and ecosystem services. Using satellite imagery from 1984 to 2021, spatial patterns and temporal trends of urbanization in Kigali were investigated and analyzed. Specifically, optical satellite imagery at medium to very high resolution, i.e. Landsat TM/ETM+/OLI at 30m resolution, Sentinel-2 MSI at 10-20m resolution and WorldView-2 at 2m spatial resolution were used for land use/land cover mapping and change analysis. Diverse image processing techniques, including texture feature analysis using Gray level Co-occurrence matrix, pansharpening and derivation of various biophysical indices, were applied to enhance land use/land cover classification and analysis. Various land use/land cover classification methods were used, including pixel- and object-based support vector machine classification, Google EarthEngine-LandTrendr cloud computing, and a hybrid framework combining intermediate classification results derived from both random forest classification, and U-Net deep neural networks. The land use/land cover classes were then used not only to derive indices characterizing spatio-temporal changesin urban landscape composition and configuration, but also to analyze theimpacts of land use/land cover change on ecosystem services. Areas which provide ecosystem services were evaluated in terms of changes in spatial attributes and structure of landscape patches. The most prominent ecosystem services in the study area divided into three groups - provisioning, regulatingand supporting services - were further analyzed using a matrix spatially linking landscape units with service supply and demand budgets. In one of the studies, a monetary based valuation approach was performed for assessing spatio-temporal change in value of selected ecosystem services. Using multi-temporal, multi-resolution Earth observation data, five to twelve land use/land cover classes were derived with an overall accuracy exceeding 83% and with Kappa coefficients above 0.8. The most prominentchange was the conversion of croplands into built-up areas. As a result, the   built-up areas increased from 2.13 square km to 100.17 square km between 1984 and 2016. The results revealed that the urbanization between 1987 to 1998 was characterized by slow development, with an annual growth rate less than 2%. The post-conflict period (1995 on-wards) was characterized by accelerated urbanization, with a 4.5% annual growth rate. From 2004, urbanization was promoted due to migration pressure and investment promotion in the construction sector. The five-year interval analysis from 1990 to 2019 revealed that impervious surfaces increased from 4233.5 to 12116 hectares, with a 3.7% average annual growth rate. In order to map urban land use/land cover at fine scale, very high resolution WorldView-2 imagery was acquired and analyzed using object- and rule-based classification. Urban land cover at fine scale could be mapped with an overall accuracy exceeding 85% (kappa above0.8). Multi-temporal Sentinel-2 MSI data were found advantageous for monitoring spatiotemporal trends of urban development, and producing reliable baseline data for the analysis of urban landscape changes at entire city scale with sufficient details. During the 37 years study period, landscape fragmentation could be observed, in particular for forest and cropland. The landscape configuration indices demonstrate that, in general, the land cover pattern remained stable for cropland, but that it was highly changed for built-up areas. Estimated changes in ecosystem services amount to a loss of 69 million US dollars because of cropland degradation in favour of urban areas and in a gain of 52.5 million within urban areas between 1984 and 2016. Most of the ecosystem services bundles show that built-up areas have a high demand on ecosystem services, whereas green and blue space are strong contributors in supplying bundles of ecosystem services. The study demonstrated that multi-temporal multi-resolution Earth observation data and advanced image processing offer great opportunities for quantifying urbanization, and analyzing its environmental impacts using landscape metrics and ecosystem services variables. Medium resolution data, Landsat and Sentinel-2 MSI, were founduseful for global annual urban growth and environmental impact analysis atentire city scale. Very- high-resolution satellite data are still only available at high cost. Therefore, land use/land cover mapping based on very high resolution data should be produced only at special occasion based on cost-benefitanalysis. Meanwhile, open data policy and free access to cloud computing sys-tems such as Google Earth Engine were also found cost-effective and useful forcontinuous monitoring of the complex dynamics of urban land use/land cover,especially in areas where the cost of Earth observation data is restricting dueto budget reasons, and in data-scarce regions.The thesis contributes to the development of approaches for mapping and monitoring urban development and associated environmental impact in Sub-Saharan through the exploration of potential and limitations of multi-resolution remote sensing data. Methodological frameworks for urban land cover production based on state-of-the-art machine learning, deep learning, and Earth observation big data analytics were implemented and tested. This thesis research demonstrated that the open-access Earth observation data arecost-effective data source for monitoring urbanization and for investigatingthe impact of spatial structure changes on the distributions and patterns of  ecosystem service bundles. The frameworks developed in this research cane asily be transferred to other Sub-Saharan African cities. Future research will explore the integration of multiple-source data, i.e.,Earth observation data, population statistics and other types of data to de-tect and map urban deprivation and environmentally sensitive areas. Finally,the combination of optical and radar remote sensing data, the use of machine learning and deep learning methods in a cloud computing environment willbe further investigated to develop a dynamic framework for continuous urbanland use/land cover change monitoring.

Abstract [sv]

Urbaniseringen är en av de stora utmaningarna på 2000-talet. Trots att städerna är en motor för den globala ekonomin förbrukar de 78 % av världens energi och släpper ut mer än 60 % av utsläppen av växthusgaser. Städer i Afrika söder om Sahara, t.ex. Kigali, kännetecknas av snabb befolkningstillväxt och accelererande förändringar i markanvändning och marktäcke. Genomförandet av strategier och bestämmelser som katalysator för en hållbar urbanisering hindras dock av bristfälliga och fragmenterade uppgifter om rumsliga mönster för markanvändning och marktäcke samt befolkningsförändringar. Den insamlade statistiken är oftast föråldrad eller geografiskt aggregerad till stora heterogena administrativa enheter, vilket bedöms vara meningslöst för ett välgrundat beslutsfattande. Det finns därför ett behov av aktuella och tillförlitliga uppgifter och verktyg för att övervaka urbaniseringens rumsliga och tidsmässiga mönster och dess miljöpåverkan för ett välgrundat och hållbart beslutsfattande.

Målen för denna avhandling är i) att undersöka användningen av multi-temporala och multiupplösta jordobservationsdata för att kartlägga och övervaka urbaniseringsmönster och trender i Kigali, Rwanda, ett komplext stadsområde som kännetecknas av ett subtropiskt höglandskli- mått, och ii) att analysera urbaniseringens miljöpåverkan med hjälp av integrering av information om marktäcke som klassificerats från jordobservationsdata med landskapsmetriker och ekosystemtjänster. Med hjälp av satellitbilder från 1984 till 2021 undersöktes och analyserades rumsliga mönster och tidstrender för urbaniseringen i Kigali. Optiska satellitbilder med medelhög till mycket hög upplösning, dvs. Landsat TM/ETM+/OLI med 30 m upplösning, Sentinel-2 MSI med 10-20 m upplösning och WorldView-2 med 2 m rumslig upplösning, användes för kartläggning av markanvändning och marktäcke och analys av förändringar. Olika bildbehandlingstekniker, inklusive texturanalys med hjälp av Gray level Co-occurrence matrix, pan-skärpning och framställning av olika biofysiska index, användes för att förbättra klassificering och analys av markanvändning och marktäcke. Olika metoder för klassificering av markanvändning och marktäcke användes, bland annat pixel- och objektbaserad super- portvektormaskinklassificering, Google Earth Engine-LandTrendr cloud computing och en hybridram som kombinerar mellanliggande klassificeringsresultat från både random forest-klassificering och U-Net djupa neurala nätverk. Klasserna för markanvändning/markbeläggning användes sedan inte bara för att ta fram index som karakteriserar rums- och tidsrelaterade förändringar i stadslandskapets sammansättning och konfiguration, utan också för att analysera effekterna av förändringar i markanvändning/markbeläggning på ekosystemtjänster. Områden som tillhandahåller ekosystemtjänster utvärderades med avseende på förändringar i landskapsfläckarnas rumsliga attribut och struktur.  De mest framträdande ekosystemtjänsterna i undersökningsområdet, uppdelade i tre grupper - försörjande, reglerande och stödjande tjänster - analyserades vidare med hjälp av en matris som rumsligt kopplar samman landskapsenheter med budgetar för utbud och efterfrågan av tjänster. I en av studierna tillämpades en monetär värderingsmetod för att bedöma den tids- och rumsmässiga förändringen i värdet av utvalda ekosystemtjänster. 

Med hjälp av multitemporala jordobservationsdata med flera upplösningar har sju till tolv klasser för markanvändning/markbeläggning tagits fram med en total noggrannhet som överstiger 83 % och med Kappa-koefficienter över 0,8. Den mest framträdande förändringen var omvandlingen av åkermark till bebyggda områden. Som ett resultat av detta ökade de bebyggda områdena från 2,13 km2 till 100,17 km2 mellan 1984 och 2016. Resultaten visade att urbaniseringen mellan 1987 och 1998 kännetecknades av en långsam utveckling, med en årlig tillväxttakt på mindre än 2 %. Perioden efter konflikten (1995 och framåt) kännetecknades av en accelererande urbanisering, med en årlig tillväxttakt på 4,5 %. Från och med 2004 främjades urbaniseringen på grund av migrationstryck och investeringsfrämjande åtgärder inom byggsektorn. Analysen av femårsintervallet från 1990 till 2019 visade att de ogenomträngliga ytorna ökade från 4233,5 till 12116 hektar, med en genomsnittlig årlig tillväxttakt på 3,7 %. För att kartlägga detaljerad markbeläggning i städerna, i synnerhet områden med statsbrist, t.ex. informella bosättningar, förvärvades mycket högupplösta bilder från WorldView-2 och analyserades med hjälp av objekt- och regelbaserad klassificering. Urban markbeläggning i fin skala kunde kartläggas med en total noggrannhet på över 85 % (kappa: över 0.8). MSI-data från Sentinel-2 med flera tidpunkter visade sig vara fördelaktiga för att övervaka rumsliga och tidsmässiga trender i stadsutvecklingen och för att producera tillförlitliga grunddata för analysen av förändringar i stadslandskapet på hela stadens skala med tillräcklig detaljrikedom. 

Under den 37-åriga studieperioden kunde landskapsfragmentering observeras, särskilt när det gäller skog och åkermark. Indexen för landskapskonfiguration visar att landskapsbilden i allmänhet förblev stabil för åkermark, men att den förändrades kraftigt för bebyggda områden. De uppskattade förändringarna i ekosystemtjänsterna uppgår till en förlust på 69 miljoner US-dollar på grund av att åkermark försämras till förmån för stadsområden och till en vinst på 52,5 miljoner US-dollar inom stadsområden mellan 1984 och 2016. De flesta av ekosystemtjänstpaketen visar att bebyggda områden har ett stort behov av ekosystemtjänster, medan grönområden och blåa områden bidrar starkt till att tillhandahålla ekosystemtjänster. Studien visade att multitemporala jordobservationsdata med flera upplösningar och avancerad bildbehandling ger stora möjligheter att kvantifiera urbaniseringen och analysera dess miljöpåverkan med hjälp av landskapsmetriker och variabler för ekosystemtjänster. Data med medelhög upplösning, Landsat och Sentinel-2 MSI, visade sig vara användbara för global årlig urban tillväxt och miljökonsekvensanalys på hela stadsskalan. Satellitdata med mycket hög upplösning är fortfarande endast tillgängliga till en hög kostnad. Därför bör kartläggning av markanvändning och marktäcke baserad på data med mycket hög upplösning endast göras vid särskilda tillfällen på grundval av en kostnads-nyttoanalys. Samtidigt konstaterades det att en politik för öppna data och fri tillgång till molndatasystem som Google Earth Engine också är kostnadseffektiva och användbara för kontinuerlig övervakning av den komplexa dynamiken hos markanvändning och marktäcke i städer, särskilt i områden där kostnaden för jordobservationsdata är begränsande av budgetskäl och i regioner där det är ont om data. 

Avhandlingen bidrar till utvecklingen av metoder för kartläggning och övervakning av stadsutveckling och tillhörande miljöpåverkan i länderna söder om Sahara genom att utforska potentialen och begränsningarna hos fjärranalysdata med flera upplösningar. Metodiska ramar för produktion av markbeläggning i städerna baserade på avancerad maskininlärning, djupinlärning och analys av stora datamängder från jordobservationer har genomförts och testats. Denna avhandlingsforskning visade att jordobservationsdata med öppen tillgång är en kostnadseffektiv datakälla för övervakning av urbanisering och för att undersöka effekterna av förändringar i den rumsliga strukturen på fördelningen och mönstren av ekosystemtjänstpaket. De ramar som utvecklats i denna forskning kan lätt överföras till andra städer söder om Sahara.

Framtida forskning kommer att utforska integrationen av data från flera källor, dvs. jordobservationsdata, befolkningsstatistik och andra typer av data för att upptäcka och kartlägga stadsbrist och miljökänsliga områden. Slutligen kommer kombinationen av optiska och radarbaserade fjärranalysdata och användningen av metoder för maskininlärning och djupinlärning i en molndatormiljö att undersökas ytterligare för att utveckla en dynamisk ram för kontinuerlig övervakning av förändringar av markanvändning och marktäcke i städer.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2021. , p. 107
Series
TRITA-ABE-DLT ; 2145
Keywords [en]
Earth observation, Landsat, Sentinel-2, WorldView-2, Urbanization, Land cover classification, Support vector machines, Random forest, U-Net, LandTrendr, Landscape metrics, Ecosystem services, Environmental impact analysis, Kigali, Rwanda
Keywords [sv]
Jordobservation, Landsat, Sentinel-2 MSI, WorldView-2, Urbanisering, Klassificering av marktäcke, Stödvektormaskiner, Slumpmässig skog, U-Net, LandTrendr, Landskapsmetriker, Ekosystemtjänster, Miljökon- sekvensanalys, Kigali, Rwanda.
National Category
Earth and Related Environmental Sciences
Research subject
Geodesy and Geoinformatics, Geoinformatics
Identifiers
URN: urn:nbn:se:kth:diva-305527ISBN: 978-91-8040-089-3 (print)OAI: oai:DiVA.org:kth-305527DiVA, id: diva2:1616223
Public defence
2021-12-15, Kollegiesalen, Brinellvägen 8, KTH Campus, Videolänk https://kth-se.zoom.us/j/63468965757, Stockholm, 13:00 (English)
Opponent
Supervisors
Note

QC 20211206

Available from: 2021-12-06 Created: 2021-12-02 Last updated: 2025-02-07Bibliographically approved
List of papers
1. Urban land cover dynamics and their impact on ecosystem services in Kigali, Rwanda using multi-temporal Landsat data
Open this publication in new window or tab >>Urban land cover dynamics and their impact on ecosystem services in Kigali, Rwanda using multi-temporal Landsat data
2019 (English)In: Remote Sensing Applications: Society and Environment, ISSN 2352-9385, Vol. 13, p. 234-246Article in journal (Refereed) Published
Abstract [en]

Land cover change monitoring in rapidly urbanizing environments based on spaceborne remotely sensed data and measurable indicators is essential for quantifying and evaluating the spatial patterns of urban landscape change dynamics and for sustainable urban ecosystems management. The objectives of the study are to analyse the spatio-temporal evolution of urbanization patterns of Kigali, Rwanda over the last three decades (from 1984 to 2016) using multi-temporal Landsat data and to assess the associated environmental impact using landscape metrics and ecosystem services. Visible and infrared bands of Landsat images were combined with derived Normalized Difference Vegetation Index (NDVI), Gray Level Co-occurrence Matrix (GLCM) variance texture and digital elevation model (DEM) data for pixel-based classification using a support vector machine (SVM) classifier. Seven land cover classes were derived with an overall accuracy exceeding 87% with Kappa coefficients around 0.8. As most prominent changes, cropland was reduced considerably in favour of built-up areas that increased from 2.13 km2 to 100.17 km2 between 1984 and 2016. During those 32 years, landscape fragmentation could be observed, especially for forest and cropland. The landscape configuration indices demonstrate that in general the land cover pattern remained stable for cropland, but that it was highly changed for built-up areas. Ecosystem services considered include regulating, provisioning and support services. Estimated changes in ecosystem services amount to a loss of 69 million US dollars (USD) as a result of cropland degradation in favour of urban areas and in a gain of 52.5 million USD within urban areas. Multi-temporal remote sensing is found as a cost-effective method for analysis and quantification of urbanization and its effects using landscape metrics and ecosystem services.

Place, publisher, year, edition, pages
Elsevier, 2019
National Category
Earth Observation
Identifiers
urn:nbn:se:kth:diva-280373 (URN)10.1016/j.rsase.2018.11.001 (DOI)000654322600021 ()2-s2.0-85056976338 (Scopus ID)
Note

QC 20200907

Available from: 2020-09-07 Created: 2020-09-07 Last updated: 2025-02-10Bibliographically approved
2. Continuous Monitoring of Urban Land Cover Change Trajectories with Landsat Time Series and LandTrendr-Google Earth Engine Cloud Computing
Open this publication in new window or tab >>Continuous Monitoring of Urban Land Cover Change Trajectories with Landsat Time Series and LandTrendr-Google Earth Engine Cloud Computing
2020 (English)In: Remote Sensing, E-ISSN 2072-4292, Vol. 12, no 18, article id 2883Article in journal (Refereed) Published
Abstract [en]

Producing accurate land cover maps is time-consuming and estimating land cover changes between two generated maps is affected by error propagation. The increased availability of analysis-ready Earth Observation (EO) data and the access to big data analytics capabilities on Google Earth Engine (GEE) have opened the opportunities for continuous monitoring of environment changing patterns. This research proposed a framework for analyzing urban land cover change trajectories based on Landsat time series and LandTrendr, a well-known spectral-temporal segmentation algorithm for land-based disturbance and recovery detection. The framework involved the use of baseline land cover maps generated at the beginning and at the end of the considered time interval and proposed a new approach to merge the LandTrendr results using multiple indices for reconstructing dense annual land cover maps within the considered period. A supervised support vector machine (SVM) classification was first performed on the two Landsat scenes, respectively, acquired in 1987 and 2019 over Kigali, Rwanda. The resulting land cover maps were then imported in the GEE platform and used to label the interannual LandTrendr-derived changes. The changes in duration, year, and magnitude of land cover disturbance were derived from six different indices/bands using the LandTrendr algorithm. The interannual change LandTrendr results were then combined using a robust estimation procedure based on principal component analysis (PCA) for reconstructing the annual land cover change maps. The produced yearly land cover maps were assessed using validation data and the GEE-based Area Estimation and Accuracy Assessment (Area(2)) application. The results were used to study the Kigali's urbanization in the last three decades since 1987. The results illustrated that from 1987 to 1998, the urbanization was characterized by slow development, with less than a 2% annual growth rate. The post-conflict period was characterized by accelerated urbanization, with a 4.5% annual growth rate, particularly from 2004 onwards due to migration flows and investment promotion in the construction industry. The five-year interval analysis from 1990 to 2019 revealed that impervious surfaces increased from 4233.5 to 12116 hectares, with a 3.7% average annual growth rate. The proposed scheme was found to be cost-effective and useful for continuously monitoring the complex urban land cover dynamics, especially in environments with EO data affordability issues, and in data-sparse regions.

Place, publisher, year, edition, pages
MDPI, 2020
Keywords
Landsat time series, LandTrendr, trajectory segmentation, urban land cover change dynamics, Google Earth Engine, cloud computing
National Category
Environmental Engineering
Identifiers
urn:nbn:se:kth:diva-285634 (URN)10.3390/rs12182883 (DOI)000580772300001 ()2-s2.0-85092093986 (Scopus ID)
Note

QC 20201110

Available from: 2020-11-10 Created: 2020-11-10 Last updated: 2023-08-28Bibliographically approved
3. WorldView-2 Data for Hierarchical Object-Based Urban Land Cover Classification in Kigali: Integrating Rule-Based Approach with Urban Density and Greenness Indices
Open this publication in new window or tab >>WorldView-2 Data for Hierarchical Object-Based Urban Land Cover Classification in Kigali: Integrating Rule-Based Approach with Urban Density and Greenness Indices
2019 (English)In: Remote Sensing, E-ISSN 2072-4292, Vol. 11, no 18, article id 2128Article in journal (Refereed) Published
Abstract [en]

The emergence of high-resolution satellite data, such as WorldView-2, has opened the opportunity for urban land cover mapping at fine resolution. However, it is not straightforward to map detailed urban land cover and to detect urban deprived areas, such as informal settlements, in complex urban environments based merely on high-resolution spectral features. Thus, approaches integrating hierarchical segmentation and rule-based classification strategies can play a crucial role in producing high quality urban land cover maps. This study aims to evaluate the potential of WorldView-2 high-resolution multispectral and panchromatic imagery for detailed urban land cover classification in Kigali, Rwanda, a complex urban area characterized by a subtropical highland climate. A multi-stage object-based classification was performed using support vector machines (SVM) and a rule-based approach to derive 12 land cover classes with the input of WorldView-2 spectral bands, spectral indices, gray level co-occurrence matrix (GLCM) texture measures and a digital terrain model (DTM). In the initial classification, confusion existed among the informal settlements, the high- and low-density built-up areas, as well as between the upland and lowland agriculture. To improve the classification accuracy, a framework based on a geometric ruleset and two newly defined indices (urban density and greenness density indices) were developed. The novel framework resulted in an overall classification accuracy at 85.36% with a kappa coefficient at 0.82. The confusion between high- and low-density built-up areas significantly decreased, while informal settlements were successfully extracted with the producer and user's accuracies at 77% and 90% respectively. It was revealed that the integration of an object-based SVM classification of WorldView-2 feature sets and DTM with the geometric ruleset and urban density and greenness indices resulted in better class separability, thus higher classification accuracies in complex urban environments.

Place, publisher, year, edition, pages
MDPI, 2019
Keywords
WorldView-2, high-resolution, object-based classification, Support Vector Machine, geometric ruleset, urban density index, greenness density index, urban land cover, informal settlements
National Category
Earth Observation
Identifiers
urn:nbn:se:kth:diva-262981 (URN)10.3390/rs11182128 (DOI)000489101500058 ()2-s2.0-85072634011 (Scopus ID)
Note

QC 20191031

Available from: 2019-10-31 Created: 2019-10-31 Last updated: 2025-02-10Bibliographically approved
4. Monitoring urbanization and environmental impact in Kigali, Rwanda using Sentinel-2 MSI data and ecosystem service bundles
Open this publication in new window or tab >>Monitoring urbanization and environmental impact in Kigali, Rwanda using Sentinel-2 MSI data and ecosystem service bundles
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Rapid urbanisation in developing countries often results in uncontrolled urban growth. To support sustainable urban development, reliable and up-to-date information on urban land cover changes and their environmental impact are needed. In this study, we aim at evaluating the potential of Sentinel-2 (S2) MultiSpectral Instrument (MSI) data in monitoring urban land cover changes and at analyzing the impact of spatial structure changes on ecosystem services in Kigali, Rwanda. Using S-2 MSI data acquired in 2016 and 2021, we performed a bi-temporal hybrid land cover classification using Random Forests. To improve the classification of impervious surface, a U-Net model was adopted. The land cover classes were then used for deriving indices characterizing urban landscape structure using landscape metrics (LM). Ecosystem service bundles were derived for both years and their changes summarized using a non-monetary approach. Services providing areas were further evaluated in terms of changes in spatial attributes and structure of patches. Eight prominent ecosystem service bundles in the study area were grouped into provisioning, regulating and supporting services and further analyzed using a matrix spatially linking landscape units with service supply and demand budgets. The overall classification accuracies of the proposed eight land cover classes reached 83.7% with Kappa coefficients at 0.79 and 0.80, respectively for 2016 and 2021 classifications. The results illustrated that three urban development scenarios can be distinguished including infill through housing and infrastructures development in core urban areas, urban sprawl in fringe zones and development of urban patches at distant locations intercepted by cropland. The results revealed that the changes in LM negatively affected ecosystem service supply mainly through a decrease in cropland and forest. The expansion of high- and low-density built-up areas resulted in high demand of provisioning and regulating services, especially food and water provision, surface runoff mitigation and erosion control. As the first in Sub-Saharan African, this study demonstrated that the open-access S-2 MSI to be sufficiently detailed and cost-effective data source for urbanization monitoring and for investigating the impact of spatial structure changes on the distributions and patterns of ecosystem service bundles. The framework developed in this research can easily be transferred to other Sub-Saharan cities.

Keywords
Sentinel-2 MSI, Urbanization, Random Forest, U-Net Model, Hybrid classification, Environmental impact, Landscape Metrics, Ecosystem service bundles.
National Category
Other Engineering and Technologies
Research subject
Geodesy and Geoinformatics
Identifiers
urn:nbn:se:kth:diva-305523 (URN)
Note

QC 20211221

Available from: 2021-12-02 Created: 2021-12-02 Last updated: 2025-02-10Bibliographically approved

Open Access in DiVA

fulltext(45031 kB)2927 downloads
File information
File name FULLTEXT01.pdfFile size 45031 kBChecksum SHA-512
25f3d62cf8e2f73cbe04115580d63f68cd425c011f54af01301d8b4c2e18f5ea3605f628bd727f45c0209a692999d8ad4b9f12206d9acdd77d7299c1bbc34907
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Mugiraneza, Theodomir
By organisation
Geoinformatics
Earth and Related Environmental Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 2930 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 1516 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf