kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Continuous-Time Behavior Trees as Discontinuous Dynamical Systems
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0003-4943-2501
KTH, School of Engineering Sciences (SCI), Mathematics (Dept.), Optimization and Systems Theory. KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0002-7714-928X
2022 (English)In: IEEE Control Systems Letters, E-ISSN 2475-1456, Vol. 6, p. 1891-1896Article in journal (Refereed) Published
Abstract [en]

Behavior trees represent a hierarchical and modular way of combining several low-level control policies into a high-level task-switching policy. Hybrid dynamical systems can also be seen in terms of task switching between different policies, and therefore several comparisons between behavior trees and hybrid dynamical systems have been made, but only informally, and only in discrete time. A formal continuous-time formulation of behavior trees has been lacking. Additionally, convergence analyses of specific classes of behavior tree designs have been made, but not for general designs. In this letter, we provide the first continuous-time formulation of behavior trees, show that they can be seen as discontinuous dynamical systems (a subclass of hybrid dynamical systems), which enables the application of existence and uniqueness results to behavior trees, and finally, provide sufficient conditions under which such systems will converge to a desired region of the state space for general designs. With these results, a large body of results on continuous-time dynamical systems can be brought to use when designing behavior tree controllers.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2022. Vol. 6, p. 1891-1896
Keywords [en]
Convergence, Dynamical systems, Tools, Task analysis, Service robots, Metadata, Control theory, Autonomous systems, behavior trees, stability of hybrid systems, switched systems
National Category
Robotics and automation Control Engineering
Identifiers
URN: urn:nbn:se:kth:diva-306851DOI: 10.1109/LCSYS.2021.3134453ISI: 000733213300016Scopus ID: 2-s2.0-85121363464OAI: oai:DiVA.org:kth-306851DiVA, id: diva2:1624590
Note

QC 20220104

Available from: 2022-01-04 Created: 2022-01-04 Last updated: 2025-02-05Bibliographically approved
In thesis
1. Efficient and Trustworthy Artificial Intelligence for Critical Robotic Systems
Open this publication in new window or tab >>Efficient and Trustworthy Artificial Intelligence for Critical Robotic Systems
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Critical robotic systems are systems whose functioning is critical to both ensuring the accomplishment of a given mission and preventing the endangerment of life and the surrounding environment. These critical aspects can be formally captured by convergence, in the sense that the system's state goes to a desired region of the statespace, and safety, in the sense that the system's state avoids unsafe regions of the statespace. Data-driven control policies, found through e.g. imitation learning or reinforcement learning, can outperform model-based methods in achieving convergence and safety efficiently; however, they often only do so by encouraging them, thus, they can be difficult to trust. Model-based control policies, on the other hand, are often well-suited to admitting formal guarantees of convergence and safety, thus they are often easier to trust. The main question asked in this thesis is: how can we compose data-driven and model-based control policies together to encourage efficiency while, at the same time, formally guaranteeing convergence and safety?

We answer this question with behaviour trees, a framework to represent hybrid control systems in a modular way. We present the first formal definition of behaviour trees as a hybrid system and present the conditions under which the execution of any behaviour tree as a hybrid control system will formally guarantee convergence and safety. Moreover, we present the conditions under which such formal guarantees can be maintained when including unguaranteed data-driven control policies, such as those coming from imitation learning or reinforcement learning. We also present an approach to synthesise such data-driven control policies in such a way that they encourage convergence and safety by adapting to unforeseen events. Alongside the above, we also explore an ancillary aspect of robot autonomy by improving the efficiency of simultaneous localisation and mapping through imitation learning. Lastly, we validate the advantages of behaviour trees' modularity in a real-world autonomous underwater vehicle's control system, and argue that this modularity contributes to efficiency, in terms of ease of use, and trust, in terms of facilitating human understanding.

Abstract [sv]

Kritiska robotsystem är system vars funktion antingen är kritiska för slutförandet av en uppgift, eller kritiska på så sätt att ett misstag allvarligt kan skada människor eller miljö. Dessa kritiska aspekter fångas formellt av konvergens, i den meningen att systemets tillstånd går till en önskad region av tillståndsrummet, och säkerhet, i den meningen att systemets tillstånd undviker osäkra regioner i tillståndsrummet. Datadrivnakontrollpolicyer, hittade genom t.ex. imitationsinlärning eller förstärkningsinlärning, kan överträffa modellbaserade metoder för att effektivt uppnå konvergens och säkerhet; men de gör det ofta bara genom att öka möjligheterna för ett effektivt och säkert uppträdande, utan att ge några garantier, därför kan de vara svåra att lita på. Modellbaserade kontrollpolicyer, å andra sidan, är ofta väl lämpade för att möjliggöra formella garantier vad gäller konvergens och säkerhet, så de är ofta lättare att lita på. Huvudfrågan som ställs i denna avhandling är: hur kan vi kombinera datadrivna och modellbaserade styrpolicyer för att förbättra effektivitet samtidigt som vi formellt garanterar konvergens och säkerhet?

 

Vi besvarar denna fråga med Beteendeträd, ett ramverk för att representera hybridstyrsystem på ett modulärt sätt. Vi presenterar den första formella definitionen av beteendeträd som ett hybridsystem och presenterar villkoren under vilka exekveringen av ett beteendeträd som ett hybridkontrollsystem formellt kommer att garantera konvergens och säkerhet. Dessutom presenterar vi villkoren under vilka sådana formella garantier kan upprätthållas när man inkluderar overifierade datadrivna kontrollpolicyer, till exempel de som kommer från imitationsinlärning eller förstärkningsinlärning. Vi presenterar också ett tillvägagångssätt för att syntetisera sådana datadrivna kontrollpolicyer på ett sådant sätt att de stöttar konvergens och säkerhet genom att anpassa sig till oförutsedda händelser. Vid sidan av ovanstående utforskar vi också en viktig delfunktion inom robotautonomi genom att förbättra effektiviteten av samtidig lokalisering och kartläggning genom imitationsinlärning. Slutligen validerar vi fördelarna med behaviour trees modularitet i ett verkligt autonomt undervattensfordons kontrollsystem, och ser att denna modularitet bidrar till effektivitet, i termer av användarvänlighet och förtroende, när det gäller att underlätta mänsklig förståelse.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2022. p. 41
Series
TRITA-EECS-AVL ; 2022:68
Keywords
behaviour trees, hybrid dynamical systems, formal guarantees, optimal control, machine learning, autonomy
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-321151 (URN)978-91-8040-396-2 (ISBN)
Public defence
2022-11-29, F3, Lindstedtsvägen 26, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, IRC15-0046
Note

QC 20221107

Available from: 2022-11-07 Created: 2022-11-07 Last updated: 2022-12-23Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Sprague, ChristopherÖgren, Petter

Search in DiVA

By author/editor
Sprague, ChristopherÖgren, Petter
By organisation
Robotics, Perception and Learning, RPLOptimization and Systems Theory
In the same journal
IEEE Control Systems Letters
Robotics and automationControl Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 150 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf