kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Photon Walk in Transparent Wood: Scattering and Absorption in Hierarchically Structured Materials
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.ORCID iD: 0000-0001-6017-1774
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Fibre- and Polymer Technology, Biocomposites. KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Centres, Wallenberg Wood Science Center.
KTH, School of Engineering Sciences (SCI), Applied Physics, Photonics.ORCID iD: 0000-0002-4606-4865
Show others and affiliations
2022 (English)In: Advanced Optical Materials, ISSN 2162-7568, E-ISSN 2195-1071, article id 2102732Article in journal (Refereed) Published
Abstract [en]

The optical response of hierarchical materials is convoluted, which hinders their direct study and property control. Transparent wood (TW) is an emerging biocomposite in this category, which adds optical function to the structural properties of wood. Nano- and microscale inhomogeneities in composition, structure and at interfaces strongly affect light transmission and haze. While interface manipulation can tailor TW properties, the realization of optically clear wood requires detailed understanding of light-TW interaction mechanisms. Here we show how material scattering and absorption coefficients can be extracted from a combination of experimental spectroscopic measurements and a photon diffusion model. Contributions from different length scales can thus be deciphered and quantified. It is shown that forward scattering dominates haze in TW, primarily caused by refractive index mismatch between the wood substrate and the polymer phase. Rayleigh scattering from the wood cell wall and absorption from residual lignin have minor effects on transmittance, but the former affects haze. Results provide guidance for material design of transparent hierarchical composites towards desired optical functionality; we demonstrate experimentally how transmittance and haze of TW can be controlled over a broad range.

Place, publisher, year, edition, pages
Wiley , 2022. article id 2102732
National Category
Physical Sciences Bio Materials Composite Science and Engineering
Identifiers
URN: urn:nbn:se:kth:diva-307402DOI: 10.1002/adom.202102732ISI: 000769582700001Scopus ID: 2-s2.0-85125315413OAI: oai:DiVA.org:kth-307402DiVA, id: diva2:1631836
Funder
EU, European Research Council, 742733Knut and Alice Wallenberg Foundation
Note

QC 20220125

Available from: 2022-01-25 Created: 2022-01-25 Last updated: 2022-09-23Bibliographically approved
In thesis
1. Light Scattering Effects in Transparent Wood Biocomposites
Open this publication in new window or tab >>Light Scattering Effects in Transparent Wood Biocomposites
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Transparent wood (TW) shows interesting optical properties and offers a sustainable alternative to petroleum-based polymer glasses. The influence of the TW internal structure (e.g. fiber alignment, volume fraction of cellulose, lignin content, defects from preparation process) on the optical properties is poorly understood, which limits its use in various applications. It is also true for transparent cellulose biocomposites in general. In this thesis, eco-friendly TW biocomposites are investigated. The work focuses on experimental characterization, structure-optical property relationships and possibilities to quantify such relationships.  

                TWs made of delignified wood substrates with longitudinal direction of the tree parallel to the specimen surface are prepared. Relationships between anisotropic scattering and fiber alignment are studied by scattering angle measurement. Anisotropic photons distributions are compared between two fiber directions and various sample thicknesses. Next, attenuation coefficients (related to the anisotropic diffusion coefficients and absorption coefficient) for TWs are obtained by combining the photon diffusion equation with total transmittance measurements. The results indicate strong influence from the air gaps between wood substrate phase and polymer in the lumen pores on the scattering. Beside the airgaps between wood substrate and polymer, refractive index mismatch between polymer and wood substrate strongly influences the scattering. Thus, immersion liquid method (based on the total transmittance measurement) combined with a light transmission model (based on Fresnel reflection theory) is applied to estimate the refractive index of the delignified wood substrate. This facilitates TW design (i.e. the proper polymer selection for various applications) and modelling of the optical properties of delignified wood based transparent materials. Finally, extinction coefficients, Rayleigh scattering and absorption coefficients of TW are extracted from photon budget measurements combined with a light diffusion model developed. With higher volume fraction of cellulose, all these parameters are increased, although polymer-cellulose refractive index mismatch is the dominating factor controlling transmittance. The strong forward scattering in TW is analysed, and Rayleigh scattering has a strong effect on haze. The influence of lignin content on the absorption coefficient is also discussed.

Abstract [sv]

Transparent trä (TW) har intressanta optiska egenskaper och erbjuder ett hållbart alternativ till petroleumbaserade polymerer. Förståelsen för inverkan av mikrostruktur hos TW (t.ex. fiberinriktning, volymandel av cellulosa, ligninhalt, defekter från beredningsprocessen) på de optiska egenskaperna är ofullständig, vilket begränsar dess användning i olika tillämpningar. Det gäller också generellt för transparenta cellulosabiokompositer. I denna avhandling studeras miljövänliga TW biokompositer, med fokus på experimentell karakterisering, samband mellan struktur och optiska egenskaper samt möjligheterna att kvantifiera sådana samband.

                TW baserade på delignifierade träsubstrat har i denna studie trädets fiberriktning parallell med provytan. Samband mellan anisotrop ljusspridning och fiberorientering studeras genom mätning av spridningsvinkel. Anisotropa fotonfördelningar jämförs mellan två fiberriktningar och olika provtjocklekar. Därefter erhålls koefficienter för ”attenuering” (försvagning), som är relaterade till de anisotropa diffusionskoefficienterna och absorptionskoefficienten för TW. De bestäms genom att kombinera en modell för fotondiffusion med mätningar av total optisk transmittans. Resultaten indikerar en stark påverkan på ljusspridningen av luftspalter mellan träsubstrat och polymer i lumen, som är en form av debondsprickor. Utöver debondsprickor mellan träsubstrat och polymer, så påverkas ljusspridningen även av skillnaden i brytningsindex mellan polymer och träsubstrat. Av det skälet utvecklas en metod för att mäta brytningsindex hos träsubstratet. Det porösa substratet sänks ned i en vätska med känt brytningsindex och optisk transmittans mäts och kombineras med en modell för ljustransmission baserad på fresnelreflektion. Goda data för träsubstratets brytningsindex underlättar vid formgivning av TW biokompositer (dvs. rätt polymerval för olika applikationer) och är också viktigt för modellering av de optiska egenskaperna hos transparenta material från delignifierat trä. I avhandlingens sista del kombineras en modell för ljusdiffusion med systematiska mätningar av ljusspridning, reflektion och transmittans hos olika materialprover. Data för ”extinktionskoefficienter”, Rayleigh-spridning och absorptionskoefficienter kan bestämmas, liksom hela fotonbudgeten för materialet. Med högre volymfraktion av cellulosa ökar värdena för alla dessa parametrar, även om skillnaden i brytningsindex mellan polymer och cellulosa är den dominerande faktorn som styr transmittansen. Den starka ljusspridningen framåt (”haze”) i TW analyseras, och även Rayleighspridningen har en stor effekt på ljusspridning. Ligninhaltens inverkan på absorptionskoefficienten diskuteras också.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2022. p. 45
Series
TRITA-CBH-FOU ; 2022:5
Keywords
Transparent wood, cellulose, biocomposite, light transmission, anisotropic scattering, Rayleigh scattering, photon budget, photon diffusion theory, light-transparent wood interaction, Transparent trä, cellulosa, biokomposit, ljustransmission, anisotropisk spridning, Rayleigh-spridning, fotonbudget, fotondiffusionsteori, ljus-transparent trä interaktion
National Category
Physical Sciences Bio Materials Composite Science and Engineering
Research subject
Fibre and Polymer Science
Identifiers
urn:nbn:se:kth:diva-307403 (URN)978-91-8040-113-5 (ISBN)
Public defence
2022-02-25, F3, Lindstedtsvägen 26, Stockholm, 10:00 (English)
Opponent
Supervisors
Funder
EU, European Research Council, 742733Knut and Alice Wallenberg Foundation
Note

QC 2022-01-26

Available from: 2022-01-26 Created: 2022-01-25 Last updated: 2022-09-19Bibliographically approved

Open Access in DiVA

fulltext(2902 kB)180 downloads
File information
File name FULLTEXT01.pdfFile size 2902 kBChecksum SHA-512
7f138cbe353c8b23ad38994f3aef924a8977db6f6c88114fccc2641d31ed846ef3562fd00a92cbc581d40e60acf7537be65579f4b78fa3178e749612cc4777f8
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Chen, HuiMontanari, CelineShanker, RaviMarcinkevičius, SauliusBerglund, LarsSychugov, Ilya

Search in DiVA

By author/editor
Chen, HuiMontanari, CelineShanker, RaviMarcinkevičius, SauliusBerglund, LarsSychugov, Ilya
By organisation
BiocompositesWallenberg Wood Science CenterPhotonics
In the same journal
Advanced Optical Materials
Physical SciencesBio MaterialsComposite Science and Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 180 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 610 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf