kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Analytical and Numerical Studies of Oblique Wave Incidence on Impedance-Matched Graded Interfaces between RHM and LHM Media
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering.ORCID iD: 0000-0003-0369-7520
2022 (English)In: Progress In Electromagnetics Research M, ISSN 1937-8726, Vol. 107, p. 131-140Article in journal (Refereed) Published
Abstract [en]

This paper presents analytical and numerical studies of electromagnetic wave propagation through an interface between a regular right-handed material (RHM) and a left-handed metamaterial (LHM). The interface is graded along the direction perpendicular to the boundary plane between the two materials, chosen to be the x-direction. The permittivity epsilon(omega, x) and permeability mu(omega, x) are chosen to vary according to hyperbolic tangent functions. We show that the field intensities for both TE-and TM-cases satisfy the same differential equations, and we obtain remarkably simple exact analytical solutions to Helmholtz' equations for lossy media. The obtained exact analytical results for the field intensities along the graded RHM-LHM composite confirm all the expected properties of RHM-LHM structures. Finally, we perform a numerical study of the wave propagation over an impedance-matched graded RHM-LHM interface, using the software COMSOL Multiphysics, and obtain an excellent agreement between the numerical simulations and analytical results. The results obtained in the present paper are not limited to any particular application, and are generally useful for all cases of wave propagation over impedance-matched two-and three-dimensional interfaces between RHM and LHM media. The advantage of the present method is that it can model smooth realistic material transitions, while at the same time including the abrupt transition as a limiting case. Furthermore, unlike previously existing solutions, the interface width is included as a parameter in the analytical solutions in a very simple way. This enables the use of the interface width as an additional degree of freedom in the design of practical RHM-LHM interfaces.

Place, publisher, year, edition, pages
ELECTROMAGNETICS ACAD , 2022. Vol. 107, p. 131-140
National Category
Computational Mathematics Other Electrical Engineering, Electronic Engineering, Information Engineering Fluid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-308796DOI: 10.2528/PIERM21112701ISI: 000748526100011Scopus ID: 2-s2.0-85125064870OAI: oai:DiVA.org:kth-308796DiVA, id: diva2:1637515
Note

QC 20221108

Available from: 2022-02-14 Created: 2022-02-14 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Wave propagation in graded material composites with extraordinary properties
Open this publication in new window or tab >>Wave propagation in graded material composites with extraordinary properties
2022 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [sv]

I denna avhandling studeras elektromagnetisk vågutbredning i graderade materialkompositer med extraordinära egenskaper. Två sådana materialkompositsystem studeras särskilt, med hjälp av både analytiska och beräkningstekniska elektromagnetiska metoder.

Det första systemet används för utvecklingen av en lovande icke-invasiv metod för cancerbehandling, som bygger på att tumören med insatta guldnanopartiklar värms upp med hjälp av mikrovågsstrålning. En vågledarstruktur föreslås bestående av ett tunt dielektriskt skikt med en kontinuerlig graderad materialövergång till dess omgivande material till vardera sidan av skiktet. Det tunna lagret består av cancervävnad med insatta guldnanopartiklar som drivs in i elektroforetisk svängning med hjälp av elektromagnetisk strålning. Analytiska lösningar för det givna vågledarproblemet erhålls, vilket möjliggör beräkning av absorptionskoefficienterna endast inom det tunna skiktet, vilket är viktigt för bedömning av genomförbarheten av den tänkta medicinska tillämpningen. De dispersiva dielektriska modellerna som beskriver de elektromagnetiska egenskaperna hos de relevanta biologiska vävnaderna föreslås och diskuteras. Numeriska simuleringar gjorda i COMSOL Multiphysics är i utmärkt överensstämmelse med och validerar de analytiska resultaten.

Det andra systemet involverar vågutbredning från ett högerhänt material till ett vänsterhänt metamaterial i fri rymd. De två materialen är impedansmatchade, vilket säkerställer ingen reflektion, och det graderade gränssnittet mellan dem beskrivs av en kontinuerlig funktion. Metamaterialkompositer med rumsligt varierande materialparametrar har fått ett ökande teoretiskt och experimentellt intresse de senaste två decennierna. De är användbara för ett antal tillämpningar, såsom transformationsoptik. I denna uppsats diskuteras egenskaperna hos vänsterhänta material. Fältlösningarna till det impedansmatchade graderade gränssnittet härleds, och en numerisk modell utvecklas i COMSOL. Resultaten bekräftar de extraordinära egenskaperna hos vänsterhänta material.

Abstract [en]

In this thesis, electromagnetic wave propagation in graded material composites with extraordinary properties are studied. Two such material composite systems are studied in particular, using both analytical and computational electromagnetic methods.

The first system is used for the development of a promising non-invasive method of cancer treatment based on heating the tumors with inserted gold nanoparticles by means of microwave radiation. A waveguide structure is proposed consisting of a thin dielectric layer with a continuous graded material transition to its surrounding materials to either side of the layer. The thin layer consists of cancer tissue with inserted gold nanoparticles that are driven into electrophoretic oscillation by means of electromagnetic radiation. Analytical solutions for the given waveguide problem are obtained, allowing the calculation of the absorption coefficients within the thin layer only, which is important for assessment of the feasibility of the envisioned medical application. The dispersive dielectric models describing the electromagnetic properties of the relevant biological tissues are proposed and discussed. Numerical simulations done in COMSOL Multiphysics are in excellent agreement with and validate the analytical results.

The second system involves wave propagation from a right-handed material to a left-handed metamaterial in an open boundary system. The two materials are impedance-matched, thus ensuring no reflection, and the graded interface between them is described by a continuous function. Metamaterial composites with spatially varying material parameters have been given an increasing theoretical and experimental interest the last two decades. They are useful for a number of applications, such as transformation optics. In this thesis, the properties of left-handed media are discussed. The field solutions to the impedance-matched graded interface are derived, and a numerical model is developed in COMSOL. The results confirm the extraordinary properties of left-handed media.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022. p. vii, 33
Series
TRITA-EECS-AVL ; 2022:72
Keywords
gradient-index, waveguides, gold nanoparticles, cancer treatment, left-handed media, negative index materials, metamaterials
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering Nano Technology Other Physics Topics
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-321787 (URN)978-91-8040-406-8 (ISBN)
Presentation
2022-12-16, H1, Teknikringen 33, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 20221129

Available from: 2022-11-29 Created: 2022-11-28 Last updated: 2022-11-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Svendsen, Brage B.Rana, BalwanDalarsson, Mariana

Search in DiVA

By author/editor
Svendsen, Brage B.Rana, BalwanDalarsson, Mariana
By organisation
Electromagnetic EngineeringElectrical Engineering
In the same journal
Progress In Electromagnetics Research M
Computational MathematicsOther Electrical Engineering, Electronic Engineering, Information EngineeringFluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 141 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf