kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Graph-based Task-specific Prediction Models for Interactions between Deformable and Rigid Objects
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.ORCID iD: 0000-0002-9486-9238
Karlsruhe Inst Technol, Inst Anthropomat & Robot, Karlsruhe, Germany..
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.ORCID iD: 0000-0002-0900-1523
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL. KTH, School of Electrical Engineering and Computer Science (EECS), Centres, Centre for Autonomous Systems, CAS.ORCID iD: 0000-0002-3599-440x
Show others and affiliations
2021 (English)In: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE , 2021, p. 5741-5748Conference paper, Published paper (Refereed)
Abstract [en]

Capturing scene dynamics and predicting the future scene state is challenging but essential for robotic manipulation tasks, especially when the scene contains both rigid and deformable objects. In this work, we contribute a simulation environment and generate a novel dataset for task-specific manipulation, involving interactions between rigid objects and a deformable bag. The dataset incorporates a rich variety of scenarios including different object sizes, object numbers and manipulation actions. We approach dynamics learning by proposing an object-centric graph representation and two modules which are Active Prediction Module (APM) and Position Prediction Module (PPM) based on graph neural networks with an encode-process-decode architecture. At the inference stage, we build a two-stage model based on the learned modules for single time step prediction. We combine modules with different prediction horizons into a mixed-horizon model which addresses long-term prediction. In an ablation study, we show the benefits of the two-stage model for single time step prediction and the effectiveness of the mixed-horizon model for long-term prediction tasks. Supplementary material is available at https://github.com/wengzehang/deformable_rigid_interaction_prediction

Place, publisher, year, edition, pages
IEEE , 2021. p. 5741-5748
Series
IEEE International Conference on Intelligent Robots and Systems, ISSN 2153-0858
National Category
Robotics and automation
Identifiers
URN: urn:nbn:se:kth:diva-310036DOI: 10.1109/IROS51168.2021.9636660ISI: 000755125504084Scopus ID: 2-s2.0-85124346839OAI: oai:DiVA.org:kth-310036DiVA, id: diva2:1646801
Conference
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), SEP 27-OCT 01, 2021, ELECTR NETWORK, Prague
Note

QC 20220324

Part of proceedings: ISBN 978-1-6654-1714-3

Available from: 2022-03-24 Created: 2022-03-24 Last updated: 2025-05-14Bibliographically approved
In thesis
1. Approach-constrained Grasp Synthesis and Interactive Perception for Rigid and Deformable Objects
Open this publication in new window or tab >>Approach-constrained Grasp Synthesis and Interactive Perception for Rigid and Deformable Objects
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

This thesis introduces methods for two robotic tasks: grasp synthesis and deformable object manipulation. These tasks are connected by interactive perception, where robots actively manipulate objects to improve sensory feed-back and task performance. Achieving a collision-free, successful grasp is essential for subsequent interaction, while effective manipulation of deformable objects broadens real-world applications. For robotic grasp synthesis, we address the challenge of approach-constrained grasping. We introduce two methods: GoNet and CAPGrasp. GoNet learns a grasp sampler that generates grasp poses with approach directions that lie in a selected discretized bin. In contrast, CAPGrasp enables sampling in a continuous space without requiring explicit approach direction annotations in the learning phase, improving the grasp success rate and providing more flexibility for imposing approach constraint. For robotic deformable object manipulation, we focus on manipulating deformable bags with handles—a common daily human activity. We first propose a method that captures scene dynamics and predicts future states in environments containing both rigid spheres and a deformable bag. Our approach employs an object-centric graph representation and an encoder-decoder framework to forecast future graph states. Additionally, we integrate an active camera into the system, explicitly considering the regularity and structure of motion to couple the camera with the manipulator for effective exploration.

To address the common data scarcity issue in both domains, we also develop simulation environments and propose annotated datasets for extensive benchmarking. Experimental results on both simulated and real-world platforms demonstrate the effectiveness of our methods compared to established baselines.

Abstract [sv]

Denna avhandling introducerar metoder för två robotuppgifter: grepp-syntes och manipulering av deformerbara objekt. Dessa uppgifter är sam-mankopplade genom interaktiv perception, där robotar aktivt manipulerar objekt för att förbättra sensorisk feedback och uppgiftsutförande. Att uppnå ett kollisionsfritt, framgångsrikt grepp är avgörande för efterföljande interak-tion, medan effektiv manipulering av deformerbara objekt breddar verkliga tillämpningar. För robotisk greppsyntes tar vi oss an utmaningen med tillvägagångssätt-begränsat grepp. Vi introducerar två metoder: GoNet och CAPGrasp. GoNet lär sig en gripsamplare som genererar gripposer med inflygningsriktningar som ligger i en vald diskretiserad bin. CAPGrasp, däremot, möjliggör sampling i ett kontinuerligt utrymme utan att kräva explicita tillvägagångssättsanvisningar i inlärningsfasen, vilket förbättrar greppets framgångsfrekvens och ger mer flexibilitet för att införa begränsningar för tillvägagångssätt.

För robotmanipulering av deformerbara föremål fokuserar vi på att manipulera deformerbara påsar med handtag - en vanlig mänsklig aktivitet. Vi föreslår först en metod som fångar scenens dynamik och förutsäger framti-da tillstånd i miljöer som innehåller både stela sfärer och en deformerbar påse. Vårt tillvägagångssätt använder en objektcentrerad grafrepresentation och ett ramverk för kodare-avkodare för att förutsäga framtida graftillstånd. Dessutom integrerar vi en aktiv kamera i systemet, och tar uttryckligen hänsyn till rörelsens regelbundenhet och struktur för att koppla ihop kameran med manipulatorn för effektiv utforskning. För att ta itu med det vanliga problemet med databrist i båda domänerna utvecklar vi också simuleringsmiljöer och föreslår kommenterade datauppsättningar för omfattande benchmarking. Experimentella resultat på både simulerade och verkliga plattformar visar effektiviteten hos våra metoder jämfört med etablerade baslinjer.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2025. p. 52
Series
TRITA-EECS-AVL ; 2025:63
National Category
Robotics and automation
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-363359 (URN)978-91-8106-304-2 (ISBN)
Public defence
2025-06-10, D3, Lindstedtvägen 9, Stockholm, Stockholm, 14:30 (English)
Opponent
Supervisors
Note

QC 20250514

Available from: 2025-05-14 Created: 2025-05-14 Last updated: 2025-05-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Weng, ZehangVarava, AnastasiiaYin, HangKragic, Danica

Search in DiVA

By author/editor
Weng, ZehangVarava, AnastasiiaYin, HangKragic, Danica
By organisation
Robotics, Perception and Learning, RPLCentre for Autonomous Systems, CAS
Robotics and automation

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 62 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf