kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Nanoscale sheared droplet: volume-of-fluid, phase-field and no-slip molecular dynamics
KTH, School of Engineering Sciences (SCI), Engineering Mechanics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. FOTONIKA-LV, Institute of Atomic Physics and Spectroscopy, University of Latvia, LV-1586Riga, Latvia.ORCID iD: 0000-0003-3094-0848
KTH, School of Engineering Sciences (SCI), Applied Physics, Biophysics. KTH, Centres, SeRC - Swedish e-Science Research Centre. KTH, Centres, Science for Life Laboratory, SciLifeLab.ORCID iD: 0000-0002-2603-8440
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW.ORCID iD: 0000-0001-5673-5178
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics. KTH, School of Engineering Sciences (SCI), Centres, Linné Flow Center, FLOW. Södertorn University, Stockholm, Sweden.ORCID iD: 0000-0003-3336-1462
Show others and affiliations
2022 (English)In: Journal of Fluid Mechanics, ISSN 0022-1120, E-ISSN 1469-7645, Vol. 940, article id A10Article in journal (Refereed) Published
Abstract [en]

The motion of the three-phase contact line between two immiscible fluids and a solid surface arises in a variety of wetting phenomena and technological applications. One challenge in continuum theory is the effective representation of molecular motion close to the contact line. Here, we characterize the molecular processes of the moving contact line to assess the accuracy of two different continuum two-phase models. Specifically, molecular dynamics simulations of a two-dimensional droplet between two moving plates are used to create reference data for different capillary numbers and contact angles. We use a simple-point-charge/extended water model. This model provides a very small slip and a more realistic representation of the molecular physics than Lennard-Jones models. The Cahn–Hilliard phase-field model and the volume-of-fluid model are calibrated against the drop displacement from molecular dynamics reference data. It is shown that the calibrated continuum models can accurately capture droplet displacement and droplet break-up for different capillary numbers and contact angles. However, we also observe differences between continuum and atomistic simulations in describing the transient and unsteady droplet behaviour, in particular, close to dynamical wetting transitions. The molecular dynamics of the sheared droplet provide insight into the line friction experienced by the advancing and receding contact lines. The presented results will serve as a stepping stone towards developing accurate continuum models for nanoscale hydrodynamics.

Place, publisher, year, edition, pages
Cambridge University Press (CUP) , 2022. Vol. 940, article id A10
National Category
Fluid Mechanics
Identifiers
URN: urn:nbn:se:kth:diva-311053DOI: 10.1017/jfm.2022.219ISI: 000778572600001Scopus ID: 2-s2.0-85129201165OAI: oai:DiVA.org:kth-311053DiVA, id: diva2:1652078
Funder
Swedish Research Council, VR-2014-5680
Note

QC 20220425

Available from: 2022-04-14 Created: 2022-04-14 Last updated: 2025-02-09Bibliographically approved
In thesis
1. Interaction of flows with slender structures and liquid-infused surfaces
Open this publication in new window or tab >>Interaction of flows with slender structures and liquid-infused surfaces
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Surface textures and protrusions can be used to control or gain information about a flow. We investigate the solid-flow interaction of filamentous structures and liquid-infused surfaces (LIS). Both filamentous structures and LIS are used by organisms and can be exploited in technical applications.

Numerical simulations show that the filament resonance frequency is central to the interaction of a filament bed with turbulent flows. This frequency can be changed by varying filament mass or elasticity. Heavy filaments are only affected by slow turbulence structures and can be used to obtain information about those. Light filaments can create regions of high permeability, increasing drag. The thesis explores a sensor concept consisting of a doubly supported filament made of a soft material. The soft material makes the filament durable as it can sustain large strains.

LIS consist of a solid texture infused with a lubricant. The lubricant can decrease drag, increase heat transfer or be a protective coating. LIS with longitudinal grooves subjected to turbulent flow are investigated by numerical simulations using a volume-of-fluid (VOF) method. The capillary waves on the interfaces are more prominent for lower surface tension or wider grooves. For an inappropriately designed LIS, capillary waves can increase drag. Design criteria are constructed to avoid such waves. The VOF method is also compared to molecular dynamics simulations to assess its accuracy. 

Drag degradation might occur because of surfactant traces in the flow. The surfactants adsorb onto the interfaces and produce Marangoni stresses. Surfactant-contaminated laminar flow over LIS with transverse grooves are investigated numerically and described using an analytical model. The external flow also induces recirculation of the LIS lubricant. The lubricant flow can be used to increase the surface heat flux. This mode of heat transfer can be relevant if the solid and liquid conductivities are similar, both for laminar and turbulent external flows.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2022
Series
TRITA-SCI-FOU ; 2022:13
Keywords
flow-structure interactions, flow control, turbulent boundary layers, soft sensors, drag reduction, capillary waves, surfactants, Marangoni stress, mixing enhancement
National Category
Fluid Mechanics
Research subject
Engineering Mechanics
Identifiers
urn:nbn:se:kth:diva-311055 (URN)978-91-8040-213-2 (ISBN)
Public defence
2022-05-20, https://kth-se.zoom.us/j/67426549354, Kollegiesalen (Room nr: 4301), Brinellvägen 8, Stockholm, 10:15 (English)
Opponent
Supervisors
Note

QC 220419

Available from: 2022-04-19 Created: 2022-04-14 Last updated: 2025-02-09Bibliographically approved
2. Bridging the molecular and the continuous pictures of wetting dynamics on hydrophilic surfaces
Open this publication in new window or tab >>Bridging the molecular and the continuous pictures of wetting dynamics on hydrophilic surfaces
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The term ‘wetting' is used by the scientific community when referring to the affinity and the dynamics of liquid films, drops or menisci over solid surfaces. Wetting processes can be observed in everyday life: a water rivulet sliding down a glass window, an oil droplet hovering over a no-stick pan, a drink meniscus traveling up a straw. Given the mundane occurrence of wetting, it may surprise to discover that there is no definitive description of how it occurs in the first place. In the past 50 years the community of fluid dynamics has come up with theoretical models and experiments aimed to demystify the dynamics of contact lines, i.e. the locations in space where liquid, vapor and solid phases meet. One key conclusion of this effort is that wetting dynamics is inherently a multiscale process, whereby flow at all scales is important.

The possibility of investigating the physics of contact lines is limited by the spatial resolution of experiments. In the last two decades a new investigation tool has joined the fray: direct numerical experiments, in the form of Molecular Dynamics simulations. These ‘virtual lenses' enable us to inspect wetting processes with a time and spatial resolution impossible to achieve with experiments. The goal of this thesis is to use Molecular Dynamics simulations to understand how wetting on hydrophilic silica-like surfaces can be modeled using the tools of continuous hydrodynamics, and conversely what effects emerge inherently from the discrete nature of the molecular world.

Molecular simulations sacrifice computational efficiency on the altar of detail and cannot directly reproduce wetting processes occurring at the scale of microns and upward. Accurate meso- and macroscopic models that can incorporate the effects of molecular physics are hence of great importance. The first half of this thesis illustrates the process of parametrizing Phase Field and Volume of Fluid methods with information provided by molecular simulations, as well as the assessment of their physical validity. Contact line dynamics over hydrophilic surfaces where liquid-solid slip is negligible represents a stress-test for continuous hydrodynamics.

The second half of the thesis focuses on molecular scale effects. The local layering and orientation of water molecules close to silica surfaces is found to affect the mobility of contact lines. In particular, molecular motion in the two surface-nearest liquid layers is responsible for a friction asymmetry, whereby hydrophilic surfaces result easier to wet rather than de-wet. The relation between liquid-solid friction liquid viscosity is also studied. It is determined that accurate correlations can be obtained only by accounting for molecular structure at the liquid/wall interface. These results corroborate the view of wetting as an inherently interfacial process and the idea of incorporating molecular-scale physics in its description.

Abstract [sv]

Termen ‘vätning' används i den akademiska världen när man hänvisar till affiniteten och dynamiken hos vätskefilmer, droppar eller menisker över fasta ytor. Vätningsprocesser kan observeras i vardagen: en vattendroppe som glider ner längs en glasruta, en oljedroppe som svävar över en non-stick-panna, en dryck menisk som färdas upp längs ett sugrör. Med tanke på den vardagliga förekomsten av vätning kan det överraska att upptäcka att det inte finns någon definitiv beskrivning av hur den uppstår till att börja med. Under de senaste 50 åren har det inom strömningsmekaniken tagits fram teoretiska modeller och experiment som syftar till att avmystifiera dynamiken hos kontaktlinjer, dvs. platser där vätske-, gas- och fasta faser möts. En viktig slutsats av detta arbete är att vätningsdynamik är till sin natur en flerskalig process, där flöde på alla skalor är betydelsefullt.

Möjligheten att undersöka fysiken hos kontaktlinjer begränsas av rumsupplösningen hos experiment. Under de senaste två årtiondena har ett nytt undersökningsverktyg tagits fram: direkta numeriska experiment, i form av molekylär dynamik-simuleringar. Dessa ‘virtuella linser' gör det möjligt för oss att inspektera vätningsprocesser med en tids- och rumsupplösning som är omöjlig att uppnå med experiment. Målet med denna avhandling är att använda molekylär dynamik-simuleringar för att förstå hur vätning på hydrofila kiseldioxid-liknande ytor kan modelleras med hjälp av kontinuerlig strömningsmekanik, och omvänt vilka effekter som uppstår till följd av den diskreta naturen hos den molekylära världen.

Molekylära simuleringar offrar beräkningsmässig effektivitet till förmån för  detaljrikedom och kan inte direkt återskapa vätningsprocesser som sker på mikrometerskala och uppåt. Tillförlitliga meso- och makroskopiska modeller som kan inkorporera effekterna av molekylär fysik är därför av stor vikt. Den första halvan av denna avhandling illustrerar processen att parametrisera Phase Field och Volume of Fluid metoder med information som tillhandahålls av molekylära simuleringar, samt en bedömning av deras fysiska validitet. Kontaktlinje-dynamik över hydrofila ytor där slip mellan fasta- och vätskefaser är försumbart representerar ett stresstest för kontinuerlig strömningsmekanik.

Den andra halvan av avhandlingen fokuserar på effekter på molekylär skala. Den lokala skiktningen och orienteringen av vattenmolekyler nära kiseldioxidytor påverkar rörligheten hos kontaktlinjer. Specifikt ger molekylär rörelse i de två ytnära vätskeskikten upphov till en friktionsasymmetri, där hydrofila ytor ger mindre motstånd mot en avancerande kontaktlinje än en kontaktlinje som drar tillbaka. Relationen mellan vätskeviskositet och friktion mellan fasta och vätskeytor studeras också. Det visas att noggranna korrelationer endast kan erhållas genom att beakta molekylär struktur vid gränsyta mellan vätska och vägg. Dessa resultat bekräftar synen på vätning som en inneboende gränssnittsprocess och behovet av att inkludera fysik på molekylär skala i dess beskrivning.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. p. 197
Series
TRITA-SCI-FOU ; 2024:30
Keywords
Wetting, Contact Lines, Molecular Dynamics, Fluid Dynamics, Multiscale Modeling, Molecular Kinetic Theory
National Category
Fluid Mechanics
Research subject
Physics
Identifiers
urn:nbn:se:kth:diva-346683 (URN)978-91-8040-952-0 (ISBN)
Public defence
2024-06-13, F3 (Flodis), Lindstedtsvägen 26 & 28, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 2024-05-23

Available from: 2024-05-23 Created: 2024-05-21 Last updated: 2025-02-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Lācis, UǧisPellegrino, MicheleSundin, JohanAmberg, GustavZaleski, StephaneHess, BerkBagheri, Shervin

Search in DiVA

By author/editor
Lācis, UǧisPellegrino, MicheleSundin, JohanAmberg, GustavZaleski, StephaneHess, BerkBagheri, Shervin
By organisation
Engineering MechanicsLinné Flow Center, FLOWBiophysicsSeRC - Swedish e-Science Research CentreScience for Life Laboratory, SciLifeLabFluid Mechanics and Engineering Acoustics
In the same journal
Journal of Fluid Mechanics
Fluid Mechanics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 103 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf