kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Weighted Sum-SINR and Fairness Optimization for SWIPT-Multigroup Multicasting Systems with Heterogeneous Users
Show others and affiliations
2020 (English)In: IEEE Open Journal of the Communications Society, E-ISSN 2644-125X, Vol. 1, p. 1470-1484Article in journal (Refereed) Published
Abstract [en]

The development of next generation wireless communication systems focuses on the expansion of existing technologies, while ensuring an accord between various devices within a system. In this article, we target the aspect of precoder design for simultaneous wireless information and power transmission (SWIPT) in a multi-group (MG) multicasting (MC) framework capable of handling heterogeneous types of users, viz., information decoding (ID) specific, energy harvesting (EH) explicit, and/or both ID and EH operations concurrently. Precoding is a technique well-known for handling the inter-user interference in multi-user systems, however, the joint design with SWIPT is not yet fully exploited. Herein, we investigate the potential benefits of having a dedicated precoder for the set of users with EH demands, in addition to the MC precoding. We study the system performance of the aforementioned system from the perspectives of weighted sum of signal-to-interference-plus-noise-ratio (SINR) and fairness. In this regard, we formulate the precoder design problems for (i) maximizing the weighted sum of SINRs at the intended users and (ii) maximizing the minimum of SINRs at the intended users; both subject to the constraints on minimum (non-linear) harvested energy, an upper limit on the total transmit power and a minimum SINR required to close the link. We solve the above-mentioned problems using distinct iterative algorithms with the help of semi-definite relaxation (SDR) and slack-variable replacement (SVR) techniques, following suitable transformations pertaining the problem convexification. The main novelty of the proposed approach lies in the ability to jointly design the MC and EH precoders for serving the heterogeneously classified ID and EH users present in distinct groups, respectively. We illustrate the comparison between the proposed weighted sum-SINR and fairness models via simulation results, carried out under various parameter values and operating conditions.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE), 2020. Vol. 1, p. 1470-1484
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:kth:diva-312635DOI: 10.1109/OJCOMS.2020.3025876OAI: oai:DiVA.org:kth-312635DiVA, id: diva2:1659448
Note

QC 20231009

Available from: 2022-05-19 Created: 2022-05-19 Last updated: 2023-10-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full text

Authority records

Ottersten, Björn

Search in DiVA

By author/editor
Ottersten, Björn
In the same journal
IEEE Open Journal of the Communications Society
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 19 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf