Open this publication in new window or tab >>2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]
Considering the broadness of the area of artificial intelligence, interpretations of the underlying methodologies can be commonly narrowed down to either a probabilistic or a geometric point of view. Such separation is especially prevalent in more classical "pre-neural-network" machine learning if one compares Bayesian modelling with more deterministic models like nearest neighbors.
The research conducted in the dissertation is based on the study and development of geometrically-founded methodologies, carried from the areas of computational topology and geometry, applied to machine learning tasks. The work is tied together with the analysis of natural data space neighborhood partitions known as Voronoi tessellations, as well as their dual Delaunay tessellations. One of the fundamental issues that arise when working with these constructs is their overwhelmingly high geometric complexity in high dimensions so abundant in modern machine learning tasks. We present a class of techniques designed to alleviate these constraints and allow us to work with Voronoi tessellations implicitly in arbitrary dimensions without their explicit construction. The techniques are based on a ray casting procedure, a widespread methodology taking root in areas of stochastic geometry and computer graphics. We present applications of such decompositions to common machine learning problems, such as classification, density estimation and active interpolation, review the methods of Delaunay graph approximation and include a more general discussion on the topic of the high-dimensional geometric analysis.
Abstract [sv]
Med hänsyn till omfattningen av området artificiell intelligens kan indelningen av de underliggande metoderna ofta begränsas till antingen en probabilistisk eller en geometrisk synvinkel. En sådan uppdelning är särskilt utbredd inom mer klassisk maskininlärning, "före-neurala-nätverk", om man jämför Bayesiansk modellering med mer deterministiska modeller som k-närmste grannar.
Den forskning som bedrivs i avhandlingen bygger på studier och utveckling av geometriskt grundade metoder, hämtade från områdena beräkningstopologi och geometri, som tillämpas på maskininlärningsuppgifter. Arbetet knyts samman med analysen av naturliga grannskapspartitioner i datarummet som kallas Voronoi-tessellationer, liksom deras dubbla Delaunay-tessellationer. Ett grundläggande problem som uppstår när man arbetar med dessa konstruktioner är deras överväldigande höga geometriska komplexitet i höga dimensioner som är väldigt vanliga i moderna maskininlärningsuppgifter. Vi presenterar en grupp liknande tekniker som är utformade för att lindra dessa begränsningar och göra det möjligt att arbeta med Voronoi-tessellationer implicit i godtyckliga dimensioner utan att de konstrueras explicit. Teknikerna är baserade på ett strålkastningsförfarande, en utbredd metodik som har fått fäste inom områden som stokastisk geometri och datorgrafik. Vi presenterar tillämpningar av sådana dekompositioner på vanliga maskininlärningsproblem, t.ex. klassificering, täthetsuppskattning och aktiv interpolering. Vi går även igenom metoderna för approximation av Delaunay-grafer och för en mer allmän diskussion om ämnet högdimensionell geometrisk analys.
Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2022. p. 53
Series
TRITA-EECS-AVL ; 2022:62
Keywords
geometric methods, machine learning methods, Voronoi, Delaunay, high dimensional geometry, curse of dimensionality, monte carlo
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-319984 (URN)978-91-8040-376-4 (ISBN)
Public defence
2022-11-07, https://kth-se.zoom.us/j/69595665882, F3 Lindstedtsvagen 26, Stockholm, 15:00 (English)
Opponent
Supervisors
Note
QC 20221017
2022-10-172022-10-122022-10-18Bibliographically approved