kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Delaunay Component Analysis for Evaluation of Data Representations
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST).ORCID iD: 0000-0001-6920-5109
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0001-9805-0388
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0002-0900-1523
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0003-1114-6040
Show others and affiliations
2022 (English)In: Proceedings 10th International Conference on Learning Representations, ICLR 2022, International Conference on Learning Representations, ICLR , 2022Conference paper, Published paper (Refereed)
Abstract [en]

Advanced representation learning techniques require reliable and general evaluation methods. Recently, several algorithms based on the common idea of geometric and topological analysis of a manifold approximated from the learned data representations have been proposed. In this work, we introduce Delaunay Component Analysis (DCA) - an evaluation algorithm which approximates the data manifold using a more suitable neighbourhood graph called Delaunay graph. This provides a reliable manifold estimation even for challenging geometric arrangements of representations such as clusters with varying shape and density as well as outliers, which is where existing methods often fail. Furthermore, we exploit the nature of Delaunay graphs and introduce a framework for assessing the quality of individual novel data representations. We experimentally validate the proposed DCA method on representations obtained from neural networks trained with contrastive objective, supervised and generative models, and demonstrate various use cases of our extended single point evaluation framework.

Place, publisher, year, edition, pages
International Conference on Learning Representations, ICLR , 2022.
Keywords [en]
Representation Learning, Machine Learning
National Category
Computer Sciences
Identifiers
URN: urn:nbn:se:kth:diva-312715Scopus ID: 2-s2.0-85124640294OAI: oai:DiVA.org:kth-312715DiVA, id: diva2:1659725
Conference
10th International Conference on Learning Representations, ICLR 2022, Apr 25-29, 2022 (online)
Note

QC 20220614

Available from: 2022-05-20 Created: 2022-05-20 Last updated: 2023-09-07Bibliographically approved
In thesis
1. Learning and Evaluating the Geometric Structure of Representation Spaces
Open this publication in new window or tab >>Learning and Evaluating the Geometric Structure of Representation Spaces
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Efficient representations of observed input data have been shown to significantly accelerate the performance of subsequent learning tasks in numerous domains. To obtain such representations automatically, we need to design both i) models that identify useful patterns in the input data and encode them into structured low dimensional representations, and ii) evaluation measures that accurately assess the quality of the resulting representations. In this thesis, we present work that addresses both these requirements, where we extensively focus on requirement ii) since the evaluation of representations has been largely unexplored in the machine learning research. We begin with an overview of representation learning techniques and different structures that can be imposed on representation spaces, thus first addressing i). In this regard,we present a representation learning model that identifies useful patterns from multimodal data, and describe an approach that promotes a structure on there presentation space that is favourable for performing a robotics task. We then thoroughly study the problem of assessing the quality of learned representations and overview the pitfalls of current practices. With this, we motivate the evaluation based on analyzing geometric properties of representations and present two novel evaluation algorithms constituting the core of this thesis. Finally, we present an application of the proposed evaluation algorithms to compare large input graphs.

Abstract [sv]

Effektive representationer av observerat input-data har visat sig ge ensignifikant ökning av prestandan för träningsproblem i ett flertal områden.För att på ett automatiskt sett få fram sådana representationer behövervi både i) modeller som kan identifiera användbara mönster i input-datatoch koda dessa till strukturerade lågdimensionella representationer, samtii) utvärderingsmått som på ett tillförlitligt sätt mäter kvaliteten av dessarepresentationer. I denna avhandling presenterar vi arbete som hanterar bådadessa krav, där fokus ligger på ii) eftersom utvärdering av representationerhar varit ett i stort sätt outforskat ämne i litteraturen för maskininlärning.Vi börjar med en översikt av representationsinlärningstekniker och typer avstrukturer som man kan förelägga på representationsrymden, vilket tillhöri). I detta avseende, presenterar vi modell för representationsinlärning somidentifierar användbara mönster från multimodal data, samt beskriver enmetod som framhäver struktur på representationsrymden som gör sig välpassande för robotikuppgift. Vi studerar sedan genomgående problemet medatt avgöra kvaliteten av dessa inlärda representationer och ger en översikt avvanliga fallgropar som finns med nuvarande metoder. Vi motiverar med dettautvärderingen baserat på av representationernas geometriska egenskaper ochpresenterar två nya utvärderingsalgoritmer vilka huvuddelen av avhandlingenbestår av. Slutligen så presenterar vi ett praktiskt användningsområde avalgoritmerna för att jämföra stora inputgrafer.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2022. p. 54
Series
TRITA-EECS-AVL ; 2022:33
Keywords
Representation Learning, Machine Learning, Generative Models
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-312723 (URN)978-91-8040-228-6 (ISBN)
Public defence
2022-06-13, https://kth-se.zoom.us/j/65953366981, F3, Lindstedtsvägen 26, Stockholm, 15:00 (English)
Opponent
Supervisors
Note

QC 20220523

Available from: 2022-05-23 Created: 2022-05-20 Last updated: 2022-06-25Bibliographically approved
2. Breaking the Dimensionality Curse of Voronoi Tessellations
Open this publication in new window or tab >>Breaking the Dimensionality Curse of Voronoi Tessellations
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Considering the broadness of the area of artificial intelligence, interpretations of the underlying methodologies can be commonly narrowed down to either a probabilistic or a geometric point of view. Such separation is especially prevalent in more classical "pre-neural-network" machine learning if one compares Bayesian modelling with more deterministic models like nearest neighbors.

The research conducted in the dissertation is based on the study and development of geometrically-founded methodologies, carried from the areas of computational topology and geometry, applied to machine learning tasks. The work is tied together with the analysis of natural data space neighborhood partitions known as Voronoi tessellations, as well as their dual Delaunay tessellations. One of the fundamental issues that arise when working with these constructs is their overwhelmingly high geometric complexity in high dimensions so abundant in modern machine learning tasks. We present a class of techniques designed to alleviate these constraints and allow us to work with Voronoi tessellations implicitly in arbitrary dimensions without their explicit construction. The techniques are based on a ray casting procedure, a widespread methodology taking root in areas of stochastic geometry and computer graphics. We present applications of such decompositions to common machine learning problems, such as classification, density estimation and active interpolation, review the methods of Delaunay graph approximation and include a more general discussion on the topic of the high-dimensional geometric analysis.

Abstract [sv]

Med hänsyn till omfattningen av området artificiell intelligens kan indelningen av de underliggande metoderna ofta begränsas till antingen en probabilistisk eller en geometrisk synvinkel. En sådan uppdelning är särskilt utbredd inom mer klassisk maskininlärning, "före-neurala-nätverk", om man jämför Bayesiansk modellering med mer deterministiska modeller som k-närmste grannar.

Den forskning som bedrivs i avhandlingen bygger på studier och utveckling av geometriskt grundade metoder, hämtade från områdena beräkningstopologi och geometri, som tillämpas på maskininlärningsuppgifter. Arbetet knyts samman med analysen av naturliga grannskapspartitioner i datarummet som kallas Voronoi-tessellationer, liksom deras dubbla Delaunay-tessellationer. Ett grundläggande problem som uppstår när man arbetar med dessa konstruktioner är deras överväldigande höga geometriska komplexitet i höga dimensioner som är väldigt vanliga i moderna maskininlärningsuppgifter. Vi presenterar en grupp liknande tekniker som är utformade för att lindra dessa begränsningar och göra det möjligt att arbeta med Voronoi-tessellationer implicit i godtyckliga dimensioner utan att de konstrueras explicit. Teknikerna är baserade på ett strålkastningsförfarande, en utbredd metodik som har fått fäste inom områden som stokastisk geometri och datorgrafik. Vi presenterar tillämpningar av sådana dekompositioner på vanliga maskininlärningsproblem, t.ex. klassificering, täthetsuppskattning och aktiv interpolering. Vi går även igenom metoderna för approximation av Delaunay-grafer och för en mer allmän diskussion om ämnet högdimensionell geometrisk analys.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2022. p. 53
Series
TRITA-EECS-AVL ; 2022:62
Keywords
geometric methods, machine learning methods, Voronoi, Delaunay, high dimensional geometry, curse of dimensionality, monte carlo
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-319984 (URN)978-91-8040-376-4 (ISBN)
Public defence
2022-11-07, https://kth-se.zoom.us/j/69595665882, F3 Lindstedtsvagen 26, Stockholm, 15:00 (English)
Opponent
Supervisors
Note

QC 20221017

Available from: 2022-10-17 Created: 2022-10-12 Last updated: 2022-10-18Bibliographically approved

Open Access in DiVA

fulltext(36856 kB)105 downloads
File information
File name FULLTEXT01.pdfFile size 36856 kBChecksum SHA-512
db48a1756f012f43885d6cb450eba4a504e6940b38d22a715babfa62b1629d613b380069108703042663e7833520a7661a17ad132c5f0e3f92f0f4a6ee9e7ef3
Type fulltextMimetype application/pdf

Other links

ScopusConference websitePoster

Authority records

Poklukar, PetraPolianskii, VladislavVarava, AnastasiiaPokorny, Florian T.Kragic, Danica

Search in DiVA

By author/editor
Poklukar, PetraPolianskii, VladislavVarava, AnastasiiaPokorny, Florian T.Kragic, Danica
By organisation
Computational Science and Technology (CST)Robotics, Perception and Learning, RPL
Computer Sciences

Search outside of DiVA

GoogleGoogle Scholar
Total: 105 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 368 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf