kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Joint Parameter Estimation From Binary Observations Over Decentralized Channels
Show others and affiliations
2022 (English)In: IEEE Transactions on Signal Processing, ISSN 1053-587X, E-ISSN 1941-0476, Vol. 70, p. 509-522Article in journal (Refereed) Published
Abstract [en]

In wireless sensor networks, due to the bandwidth constraint, the distributed nodes (DNs) might only provide binary representatives of the source signal, and then transmit them to the central node (CN). In this paper, we consider the joint estimation of signal amplitude and background noise variance from binary observations over decentralized channels. We first analyze the Cramér-Rao lower bounds (CRLBs) of the parameters of interest and develop a quasilinear estimator (QLE), in which the desirable estimates can be obtained from several intermediate parameters linearly. Next, we consider a more realistic situation where the decentralized channel is noisy during the data transmission. Based on the error propagation model, the asymptotic analysis shows that the performance of the proposed QLE is mainly dominated by the thresholds of the quantizers, which encourages us to adopt a correlated quantization (CQ) scheme by exploiting the spatial correlation among background noises/channel noises. To ease the implementation of QLE in practice, an adaptive quantization (AQ) scheme is also proposed so as to obtain reasonable selections of the required thresholds. Finally, numerical simulations are provided to validate our theoretical findings.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2022. Vol. 70, p. 509-522
Keywords [en]
binary observations, correlated quantization, decentralized estimation, Joint parameter estimation
National Category
Signal Processing
Identifiers
URN: urn:nbn:se:kth:diva-312603DOI: 10.1109/TSP.2022.3141254ISI: 000745507200007Scopus ID: 2-s2.0-85122855454OAI: oai:DiVA.org:kth-312603DiVA, id: diva2:1660754
Note

QC 20220531

Available from: 2022-05-24 Created: 2022-05-24 Last updated: 2024-03-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Ottersten, Björn

Search in DiVA

By author/editor
Ottersten, Björn
In the same journal
IEEE Transactions on Signal Processing
Signal Processing

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 14 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf