kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Decentralized Convex Optimization for Joint Task Offloading and Resource Allocation of Vehicular Edge Computing Systems
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.ORCID iD: 0000-0003-4535-3849
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.ORCID iD: 0000-0001-5703-5923
KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Network and Systems Engineering.ORCID iD: 0000-0002-4876-0223
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics.ORCID iD: 0000-0002-4300-885X
2022 (English)In: IEEE Transactions on Vehicular Technology, ISSN 0018-9545, E-ISSN 1939-9359, p. 1-15Article in journal (Refereed) Published
Abstract [en]

Vehicular Edge Computing (VEC) systems exploit resources on both vehicles and Roadside Units (RSUs) to provide services for real-time vehicular applications that cannot be completed in the vehicles alone. Two types of decisions are critical for VEC: one is for task offloading to migrate vehicular tasks to suitable RSUs, and the other is for resource allocation at the RSUs to provide the optimal amount of computational resource to the migrated tasks under constraints on response time and energy consumption. Most of the published optimization-based methods determine the optimal solutions of the two types of decisions jointly within one optimization problem at RSUs, but the complexity of solving the optimization problem is extraordinary, because the problem is not convex and has discrete variables. Meanwhile, the nature of centralized solutions requires extra information exchange between vehicles and RSUs, which is challenged by the additional communication delay and security issues. The contribution of this paper is to decompose the joint optimization problem into two decoupled subproblems: task offloading and resource allocation. Both subproblems are reformulated for efficient solutions. The resource allocation problem is simplified by dual decomposition and can be solved at vehicles in a decentralized way. The task offloading problem is transformed from a discrete problem to a continuous convex one by a probability-based solution. Our new method efficiently achieves a near-optimal solution through decentralized optimizations, and the error bound between the solution and the true optimum is analyzed. Simulation results demonstrate the advantage of the proposed approach.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2022. p. 1-15
Keywords [en]
Vehicular Edge Computing, Task offloading, Multi-server resource allocation, Hierarchical decomposition, Decentralized convex optimization
National Category
Telecommunications Control Engineering Communication Systems
Research subject
Applied and Computational Mathematics, Optimization and Systems Theory; Information and Communication Technology; Transport Science, Transport Infrastructure
Identifiers
URN: urn:nbn:se:kth:diva-316311DOI: 10.1109/tvt.2022.3197627ISI: 000908826000059Scopus ID: 2-s2.0-85136055475OAI: oai:DiVA.org:kth-316311DiVA, id: diva2:1686846
Projects
TECoSAInSecTT
Funder
KTH Royal Institute of Technology, XPRESVinnova, TECoSAEU, Horizon 2020, InSecTT
Note

QC 20230215

Available from: 2022-08-11 Created: 2022-08-11 Last updated: 2025-03-06Bibliographically approved
In thesis
1. Optimal Control and Coordination of Autonomous Intelligent Systems by Edge Computing
Open this publication in new window or tab >>Optimal Control and Coordination of Autonomous Intelligent Systems by Edge Computing
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Autonomous Intelligent Systems (AIS) are transforming various sectors by integrating advanced control theories, artificial intelligence, and cyber-physical systems. However, AIS control development faces significant challenges, including ensuring real-time responsiveness, designing adaptive controllers for dynamic environments, and coordinating multi-agent systems under uncertainties. These issues are exacerbated in resource-constrained settings, where balancing computational demands and real-time performance is critical.

To mitigate these challenges, this thesis leverages edge computing to enhance system performance, so that data-driven methods and optimal control technologies become feasible for complex AIS applications. Edge computing is a scheme that brings computation, communication, and storage resources closer to data sources, to achieve low-latency processing, real-time adaptability, and scalable solutions for AIS applications. It provides two key benefits: (1) offloading computationally intensive tasks to nearby edge servers, so as to ensure responsive and efficient operations despite constrained resources onboard, and (2) facilitating decentralized coordination among multiple agents by exploiting the edge server as a trustworthy node, so as to improve system scalability, reliability, and collaborative decision-making.

Building on the advantages of the offloading and coordination capabilities inherent in edge computing, this thesis investigates how these features can be harnessed to overcome the limitations of AIS in achieving optimal control and coordination. Primary contributions of this thesis include: (1) the development of state estimation and data-driven optimal control algorithms, which enables more precise estimation and control in nonlinear, time-variant systems; (2) the design of edge-based computational task offloading algorithms to achieve real-time adaptive control and learning by distributing computationally intensive tasks, which effectively balances latency and resource constraints; and (3) the introduction of decentralized optimization frameworks for multi-agent systems, which enhances scalability, robustness, and coordination under communication constraints by leveraging edge servers as trustworthy nodes for efficient collaboration and decision-making. All contributions have been validated through case studies in soft robotics and connected and autonomous vehicles, demonstrating their effectiveness and advancements over existing methods.

In summary, this thesis advances AIS capabilities by addressing real-time computational challenges and enabling optimal, data-driven control and decentralized coordination. The integration of edge computing improves the efficiency, scalability, and adaptability of AIS, offering promising opportunities for applications in autonomous mobility and other dynamic domains.

Abstract [sv]

Autonoma intelligenta system (AIS) omvandlar olika sektorer genom att integrera avancerad reglerteknik, artificiell intelligens och cyberfysiska system. Utvecklingen av styrsystem för AIS står dock inför betydande utmaningar, såsom att säkerställa realtidsrespons, utforma adaptiva regulatorer för dynamiska miljöer och samordna multiagentsystem under osäkerheter. Dessa utmaningar är särskilt framträdande i resursbegränsade miljöer, där det är avgörande att balansera beräkningskrav och realtidsprestanda.

För att hantera dessa utmaningar utnyttjar denna avhandling edge computing för att förbättra systemprestanda och möjliggöra data-drivna metoder samt optimal styrning för komplexa AIS-applikationer. Edge computing innebär att beräknings-, kommunikations- och lagringsresurser flyttas närmare datakällorna, vilket möjliggör låglatensbearbetning, realtidsanpassning och skalbara lösningar. Detta tillvägagångssätt erbjuder två betydelsefulla fördelar: (1) avlastning av beräkningstunga uppgifter till närliggande edge-servrar för att säkerställa responsiva och effektiva operationer trots begränsade resurser ombord, och (2) decentraliserad samordning mellan flera agenter genom att utnyttja edge-servrar som tillförlitliga noder, vilket förbättrar systemets skalbarhet, robusthet och collaborative decision-making.

Genom att dra nytta av edge computing och dess möjligheter till beräkningsavlastning och decentraliserad samordning undersöker denna avhandling hur dessa funktioner kan användas för att övervinna AIS-begränsningar inom optimal reglering och koordination. De huvudsakliga bidragen i avhandlingen inkluderar: (1) utveckling av algoritmer för tillståndsskattning och data-driven optimal styrning, vilket möjliggör mer exakt skattning och styrning av icke-linjära, tidsvarierande system; (2) design av edge-baserade algoritmer för beräkningsavlastning, vilket möjliggör realtidsanpassad reglering och inlärning genom att distribuera beräkningstunga uppgifter och därmed balansera latens och resursbegränsningar; samt (3) introduktion av decentraliserade optimeringsramverk för multiagentsystem, vilket förbättrar skalbarhet, robusthet och koordination under kommunikationsbegränsningar genom att utnyttja edge-servrar som pålitliga noder för effektivt samarbete och beslutsfattande. Alla bidrag har validerats genom fallstudier inom mjukrobotik och uppkopplade autonoma fordon, vilket påvisar deras effektivitet och förbättringar jämfört med befintliga metoder.

Sammanfattningsvis stärker denna avhandling AIS genom att adressera realtidsberäkningsutmaningar och möjliggöra optimal, data-driven styrning och decentraliserad koordination. Genom att integrera edge computing förbättras AIS effektivitet, skalbarhet och anpassningsförmåga, vilket öppnar för lovande tillämpningar inom autonom mobilitet och andra dynamiska områden.

Place, publisher, year, edition, pages
Stockholm: Kungliga Tekniska högskolan, 2025. p. 77
Series
TRITA-ITM-AVL ; 2025:8
Keywords
Optimal Control, Decentralized Coordination, Real-Time Control, Edge Computing, Soft Robotics, Connected and Autonomous Vehicles, Optimal Reglering, Decentraliserad Koordinering, Realtidsstyrning, Edge Computing, Mjukrobotik, Uppkopplade och Autonoma Fordon vi
National Category
Control Engineering Robotics and automation Vehicle and Aerospace Engineering
Research subject
Machine Design
Identifiers
urn:nbn:se:kth:diva-360950 (URN)978-91-8106-220-5 (ISBN)
Public defence
2025-03-31, Gladan / https://kth-se.zoom.us/j/69313070114, Brinellvägen 85, Stockholm, 13:00 (English)
Opponent
Supervisors
Available from: 2025-03-07 Created: 2025-03-06 Last updated: 2025-03-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Tan, KaigeFeng, LeiDán, GyörgyTörngren, Martin

Search in DiVA

By author/editor
Tan, KaigeFeng, LeiDán, GyörgyTörngren, Martin
By organisation
MechatronicsNetwork and Systems Engineering
In the same journal
IEEE Transactions on Vehicular Technology
TelecommunicationsControl EngineeringCommunication Systems

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 224 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf