kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Sizing Transformer Considering Transformer Thermal Limits and Wind Farm Wake Effect
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering.ORCID iD: 0000-0001-5591-7287
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering. KTH, School of Electrical Engineering and Computer Science (EECS), Computer Science, Computational Science and Technology (CST).ORCID iD: 0000-0002-4065-715x
KTH, School of Electrical Engineering and Computer Science (EECS), Electrical Engineering, Electromagnetic Engineering.ORCID iD: 0000-0002-2964-7233
Hitachi ABB Power Grids, Västerås, Sweden.
Show others and affiliations
2021 (English)In: 2021 IEEE PES Innovative Smart Grid Technologies - Asia, ISGT Asia 2021, Institute of Electrical and Electronics Engineers (IEEE) , 2021Conference paper, Published paper (Refereed)
Abstract [en]

Compared to the wind farm itself, wind farm transformers are often oversized with regard to their capacity and lifetime. One of the reasons is that power transformers are normally sized at planning stage according to their rated power limits instead of their thermal limits. The thermal limits are usually considered only in operation. In this paper, a new method is proposed to take thermal limits into account and size the wind farm transformer at planning stage based on the expected life of the transformer insulation. An analytical model of wind turbine wakes loss is combined with the transformer thermal model to calculate the expected lifetime of the transformer insulation more accurately. Different from the previous approaches, the proposed method considers both the wake effect and the time-varying ambient temperature. Results show that compared to using the constant temperature and predicted power output without wake loss consideration, the expected lifetime of transformer insulation evaluated after involving these two factors is closer to the result evaluated based on the measured wind power.

Place, publisher, year, edition, pages
Institute of Electrical and Electronics Engineers (IEEE) , 2021.
Keywords [en]
ambient temperature, transformer size, wake effect, wind power, Electric power system interconnection, Electric utilities, Power transformers, Temperature, Thermal insulation, Wakes, Expected lifetime, Planning stages, Power limit, Thermal limits, Thermal winds, Transformer insulation, Wake loss, Wind farm
National Category
Software Engineering
Identifiers
URN: urn:nbn:se:kth:diva-316264DOI: 10.1109/ISGTASIA49270.2021.9715702ISI: 000812323700155Scopus ID: 2-s2.0-85126996864OAI: oai:DiVA.org:kth-316264DiVA, id: diva2:1688883
Conference
2021 IEEE PES Innovative Smart Grid Technologies - Asia (ISGT Asia), Brisbane, Australia, December 5-8, 2021
Note

Part of proceedings: 978-1-6654-3339-6

QC 20220819

Available from: 2022-08-19 Created: 2022-08-19 Last updated: 2025-05-22Bibliographically approved
In thesis
1. Dynamic Thermal Rating for Improved Utilization of Wind Farm Export Systems: A Methodology for Improving Load Profile Estimation of Wind Farm Export Transformers
Open this publication in new window or tab >>Dynamic Thermal Rating for Improved Utilization of Wind Farm Export Systems: A Methodology for Improving Load Profile Estimation of Wind Farm Export Transformers
2023 (English)Licentiate thesis, comprehensive summary (Other academic)
Abstract [en]

The power system components connected to renewable energy sources, such as transformers, are often oversized and conservatively loaded. The design of transformers normally ignores the intermittent nature of the connected renewable energy sources (e.g. solar, wind). Due to the variations in weather conditions and operation states, the transformer load oscillates and the actual hot spot temperature is significantly lower than the designed thermal rating.

For wind farms, the oversized transformer causes extra resourcematerial waste and a higher wind power price. Dynamic thermal rating can be applied to determine the rating of the transformers based on real-time environmental conditions (e.g. ambient temperature, wind speed). However, in order to optimize the operation of the transformers with dynamic thermal rating, the prediction of the load profile of transformers is an obstacle.

The load of wind farm export transformers oscillates due to thechange of load conditions (e.g. turbine availability, power curtailment) and environmental conditions (e.g. wind speed, wind direction and ambient temperature). This thesis proposes a new methodology to improve the utilization of wind farm export transformers by estimating their load profile more accurately and assessing their aging rate. The estimation of the load profile takes the wake effect and turbine availability into account. Specifically, the variation in the wind turbine failure and repair rates, which is influenced by the wind, is considered in the evaluation of turbine availability. Additionally, a correction method is proposed to improve the accuracy of the wake loss computation.

The results demonstrate that the estimation accuracy of the transformer load profile is improved after considering the influence of the wake effect and turbine availability. The wake effect and the turbine availability reduce the generated wind power and to some extent, reduce the load and the aging rate of transformers. However, the wake effect has limited influence when the wind farm reaches peak power production while turbine availability influences the load profile of transformers especially when the load is close to the installed capacity of the wind farm. After considering these two factors, the prediction accuracy of the hot spot temperature in the transformers can be enhanced and dynamic thermal rating can be applied to transformers with improved reliability.

Abstract [sv]

Kraftsystemkomponenter som är anslutna till förnybara energikällor, såsom transformatorer, är ofta överdimensionerade och konservativt belastade. Konstruktionen av transformatorer ignorerar normalt sett den intermittenta naturen hos anslutna förnybara energikällor (t.ex. sol och vind). På grund av variationer i väderförhållanden och drifttillstånd, oscillerar transformatorbelastningen och den faktiska hotspottemperaturen är betydligt lägre än den designade termiska bedömningen.

För vindkraftsparker orsakar den överdimensionerade transformatorn extra resursmaterialavfall och högre vindkraftspriser. Dynamisk termisk bedömning kan tillämpas för att bestämma transformatorernas betyg baserat på realtidsmiljöförhållanden (t.ex. omgivande temperatur, vindhastighet). Men för att optimera driften av transformatorer med dynamisk termisk bedömning är förutsägelsen av transformatorernas belastningsprofil ett hinder.

Belastningen på transformatorer för export av vindkraftsparkeroscillerar på grund av ändringar i belastningsförhållanden (t.ex. tillgänglighet för turbiner, effektreglering) och miljöförhållanden (t.ex. vindhastighet, vindriktning och omgivande temperatur). Denna avhandling föreslår en ny metod för att förbättra användningen av transformatorer för export av vindkraftsparker genom att uppskatta deras belastningsprofil mer noggrant och bedöma deras åldrande takt. Uppskattningen av belastningsprofilen tar hänsyn till wake-effekten och turbinernas tillgänglighet. Specifikt beaktas variationen i felfrekvensen och reparationsfrekvensen för vindturbiner, som påverkas av vinden, vid utvärderingen av turbinernas tillgänglighet. Dessutom föreslås en korrektionsmetod för att förbättra noggrannheten i beräkningen av wake-förlusten.

Resultaten visar att uppskattningen av transformatorns belastningsprofil förbättras efter att ha beaktat wake-effekten och turbinernas tillgänglighet. Wake-effekten och turbinernas tillgänglighet minskar den genererade vindkraften och minskar till viss del belastningen och åldringstakten hos transformatorer. Wake-effekten har emellertid begränsad påverkan när vindkraftsparken når maximal produktionsnivå medan turbinernas tillgänglighet påverkar belastningsprofilen hos transformatorer, särskilt när belastningen är nära installerad kapacitet för vindkraftsparken. Efter att ha beaktat dessa två faktorer kan förutsägelsens noggrannhet för hotspot-temperaturen i transformatorerna förbättras och dynamisk termisk bedömning kan tillämpas på transformatorer med förbättrad tillförlitlighet.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. ix, 57
Series
TRITA-EECS-AVL ; 2023:28
Keywords
dynamic thermal rating, wake effect, turbine availability, transformer lifetime, transformer aging, dynamisk termisk klassificering, väckningseffekt, turbintillgänglighet, transformatorlivslängd, transformatoråldring
National Category
Other Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-325725 (URN)978-91-8040-531-7 (ISBN)
Presentation
2023-05-08, Sten Velander, Teknikringen 33, Kungliga Tekniska Högskolan, Stockholm, 16:00 (English)
Opponent
Supervisors
Funder
Swedish Energy Agency
Note

QC 20230414

Available from: 2023-04-14 Created: 2023-04-13 Last updated: 2023-04-14Bibliographically approved
2. Enhancing Network OperationalFlexibility for Wind Energy Integration: A Coordinated Optimization Approach Across Generation, Transmission, Storage, and Demands
Open this publication in new window or tab >>Enhancing Network OperationalFlexibility for Wind Energy Integration: A Coordinated Optimization Approach Across Generation, Transmission, Storage, and Demands
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Increasing penetration of wind energy in electricity networks introduces significant variability that challenges operational flexibility.Traditional siloed strategies that address generation, transmission,storage and demand independently often result in local optimal wind energy integration. This issue highlights the need for a holistic and flexible operational framework to maximize wind energy utilization inthe existing networks without major new infrastructure investments.To meet this need, this dissertation proposes a coordinated optimization approach, integrating wind resource assessment, dynamic thermal rating (DTR), energy storage systems (ESS) and demand side management strategies. The approach employs optimization techniques, including two-stage stochastic programming with chance constraints and copula-based correlation modeling, to account for uncertainties in wind availability and energy demand. By optimizing across multiple energy domains (electricity, thermal energy and hydrogen) and leveraging flexibility resources, the proposed framework enhances the grid’s ability to accommodate wind variability while maintaining reliability.The contributions of this work include: first, a planning model for wind farm expansion alongside DTR-based transmission systemis introduced, which minimizes wind curtailment while balances generation investments with grid reliability; second, a dynamic dispatch strategy combining DTR with battery storage is developed to increase wind energy integration while accounting for battery degradation; third, an integrated multi-energy coordination framework ispresented to diverts excess wind power to other energy carriers and engages flexible loads; and finally, a chance-constrained stochastic optimization model is formulated to consider the uncertainties under varying weather and loading conditions.Case studies demonstrate that the coordinated strategy significantly increases wind power utilization and reduces operational costs compared to conventional siloed approaches. These improvements underscore the value of integrated planning and operation in future power systems with high shares of renewables.Overall, this work advances the state of the art in wind energy integration by validating the effectiveness of the holistic approach.It also provides a practical blueprint for system operators and planners to develop more flexible and resilient power grids under high renewable penetration.

Abstract [sv]

Ökad integration av vindkraft i elnäten medför betydande variationer som utmanar nätets operativa flexibilitet. Traditionella isolerade strategier, där produktion, överföring, lagring och efterfrågan hanteras separat, leder ofta till lokalt optimal integration av vindenergi.

Detta understryker behovet av en Holistisk och flexibel operativram för att maximera användningen av vindkraft i befintliga nät utan betydande investeringar i ny infrastruktur.

För att möta detta behov föreslås i denna avhandling en samordnad optimeringsmetod som integrerar vindresursbedömning, dynamic thermal rating (DTR), energilagringssystem (ESS) och strategier förefterfrågestyrning. Metoden använder optimeringstekniker, inklusive tvåstegs stokastisk programmering med sannolikhetsbegränsningar och copula-baserad korrelationsmodellering, för att hantera osäkerheter i vindkraftstillgång och energiefterfrågan. Genom optimering över flera energidomäner (el, värmeenergi och väte) och genom att utnyttja flexibilitetsresurser förbättrar kan det föreslagna ramverket nätets förmåga att hantera vindkraftens variation samtidigt som driftsäkerheten bibehålls. Avhandlingens bidrag inkluderar: För det första introduceras en planeringsmodell för vindkraftsutbyggnad tillsammans med DTR baserade transmissionssystem som minimerar vindkraftens begränsningar samtidigt som balans uppnås mellan investeringskostnader och nätreliabilitet. För det andra utvecklas en dynamisk driftsstrategi som kombinerar DTR med batterilagring för att öka vindenergiintegrationen med hänsyn till batteriers degradering. För det tredje presenteras ett integrerat koordinationsramverk för flera energislag, där överskottsenergi från vindkraft används i andra energiformer och flexibla laster aktiveras. Slutligen formuleras en stokastisk optimeringsmodell med sannolikhetsbegränsningar som beaktar osäkerheter under varierande väder- och belastningsförhållanden. Fallstudier visar att den samordnade strategin avsevärt ökar utnyttjandet av vindkraft och minskar driftkostnaderna jämfört med traditionella isolerade metoder. Dessa förbättringar understryker värdet av integrerad planering och drift för framtida elsystem med hög andel förnybar energi. Sammanfattningsvis bidrar denna forskning till forskningsfronten inom integration av vindkraft genom att validera effektiviteten hos en holistisk strategi. Den ger också praktisk vägledning för systemoperatörer och planerare för att utveckla mer flexibla och resilienta kraftsystem med hög andel förnybar energi.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2025. p. 110
Series
TRITA-EECS-AVL ; 2025:69
National Category
Electrical Engineering, Electronic Engineering, Information Engineering
Research subject
Electrical Engineering
Identifiers
urn:nbn:se:kth:diva-363816 (URN)978-91-8106-314-1 (ISBN)
Public defence
2025-06-12, D2, Lindstedtsvägen 9, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20250522

Available from: 2025-05-22 Created: 2025-05-22 Last updated: 2025-05-22Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Li, ZhongtianMorozovska, KaterynaHilber, Patrik

Search in DiVA

By author/editor
Li, ZhongtianMorozovska, KaterynaHilber, PatrikIvanell, Stefan
By organisation
Electrical EngineeringElectromagnetic EngineeringComputational Science and Technology (CST)
Software Engineering

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 100 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf