kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Active Nearest Neighbor Regression Through Delaunay Refinement
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Chemistry, Organic chemistry.ORCID iD: 0000-0002-9001-7708
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0001-9805-0388
KTH, School of Electrical Engineering and Computer Science (EECS), Intelligent systems, Robotics, Perception and Learning, RPL.ORCID iD: 0000-0002-0900-1523
Show others and affiliations
2022 (English)In: Proceedings of the 39th International Conference on Machine Learning, MLResearch Press , 2022, Vol. 162, p. 11650-11664Conference paper, Published paper (Refereed)
Abstract [en]

We introduce an algorithm for active function approximation based on nearest neighbor regression. Our Active Nearest Neighbor Regressor (ANNR) relies on the Voronoi-Delaunay framework from computational geometry to subdivide the space into cells with constant estimated function value and select novel query points in a way that takes the geometry of the function graph into account. We consider the recent state-of-the-art active function approximator called DEFER, which is based on incremental rectangular partitioning of the space, as the main baseline. The ANNR addresses a number of limitations that arise from the space subdivision strategy used in DEFER. We provide a computationally efficient implementation of our method, as well as theoretical halting guarantees. Empirical results show that ANNR outperforms the baseline for both closed-form functions and real-world examples, such as gravitational wave parameter inference and exploration of the latent space of a generative model.

Place, publisher, year, edition, pages
MLResearch Press , 2022. Vol. 162, p. 11650-11664
Series
Proceedings of Machine Learning Research, ISSN 2640-3498 ; 162
National Category
Computer Sciences Control Engineering
Identifiers
URN: urn:nbn:se:kth:diva-319194ISI: 000900064901033Scopus ID: 2-s2.0-85163127180OAI: oai:DiVA.org:kth-319194DiVA, id: diva2:1699653
Conference
39th International Conference on Machine Learning, Baltimore, Maryland, USA, PMLR 162, 17-23 July, 2022
Note

QC 20230509

Available from: 2022-09-28 Created: 2022-09-28 Last updated: 2024-03-02Bibliographically approved
In thesis
1. Breaking the Dimensionality Curse of Voronoi Tessellations
Open this publication in new window or tab >>Breaking the Dimensionality Curse of Voronoi Tessellations
2022 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Considering the broadness of the area of artificial intelligence, interpretations of the underlying methodologies can be commonly narrowed down to either a probabilistic or a geometric point of view. Such separation is especially prevalent in more classical "pre-neural-network" machine learning if one compares Bayesian modelling with more deterministic models like nearest neighbors.

The research conducted in the dissertation is based on the study and development of geometrically-founded methodologies, carried from the areas of computational topology and geometry, applied to machine learning tasks. The work is tied together with the analysis of natural data space neighborhood partitions known as Voronoi tessellations, as well as their dual Delaunay tessellations. One of the fundamental issues that arise when working with these constructs is their overwhelmingly high geometric complexity in high dimensions so abundant in modern machine learning tasks. We present a class of techniques designed to alleviate these constraints and allow us to work with Voronoi tessellations implicitly in arbitrary dimensions without their explicit construction. The techniques are based on a ray casting procedure, a widespread methodology taking root in areas of stochastic geometry and computer graphics. We present applications of such decompositions to common machine learning problems, such as classification, density estimation and active interpolation, review the methods of Delaunay graph approximation and include a more general discussion on the topic of the high-dimensional geometric analysis.

Abstract [sv]

Med hänsyn till omfattningen av området artificiell intelligens kan indelningen av de underliggande metoderna ofta begränsas till antingen en probabilistisk eller en geometrisk synvinkel. En sådan uppdelning är särskilt utbredd inom mer klassisk maskininlärning, "före-neurala-nätverk", om man jämför Bayesiansk modellering med mer deterministiska modeller som k-närmste grannar.

Den forskning som bedrivs i avhandlingen bygger på studier och utveckling av geometriskt grundade metoder, hämtade från områdena beräkningstopologi och geometri, som tillämpas på maskininlärningsuppgifter. Arbetet knyts samman med analysen av naturliga grannskapspartitioner i datarummet som kallas Voronoi-tessellationer, liksom deras dubbla Delaunay-tessellationer. Ett grundläggande problem som uppstår när man arbetar med dessa konstruktioner är deras överväldigande höga geometriska komplexitet i höga dimensioner som är väldigt vanliga i moderna maskininlärningsuppgifter. Vi presenterar en grupp liknande tekniker som är utformade för att lindra dessa begränsningar och göra det möjligt att arbeta med Voronoi-tessellationer implicit i godtyckliga dimensioner utan att de konstrueras explicit. Teknikerna är baserade på ett strålkastningsförfarande, en utbredd metodik som har fått fäste inom områden som stokastisk geometri och datorgrafik. Vi presenterar tillämpningar av sådana dekompositioner på vanliga maskininlärningsproblem, t.ex. klassificering, täthetsuppskattning och aktiv interpolering. Vi går även igenom metoderna för approximation av Delaunay-grafer och för en mer allmän diskussion om ämnet högdimensionell geometrisk analys.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2022. p. 53
Series
TRITA-EECS-AVL ; 2022:62
Keywords
geometric methods, machine learning methods, Voronoi, Delaunay, high dimensional geometry, curse of dimensionality, monte carlo
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-319984 (URN)978-91-8040-376-4 (ISBN)
Public defence
2022-11-07, https://kth-se.zoom.us/j/69595665882, F3 Lindstedtsvagen 26, Stockholm, 15:00 (English)
Opponent
Supervisors
Note

QC 20221017

Available from: 2022-10-17 Created: 2022-10-12 Last updated: 2022-10-18Bibliographically approved
2. On Symmetries and Metrics in Geometric Inference
Open this publication in new window or tab >>On Symmetries and Metrics in Geometric Inference
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Spaces of data naturally carry intrinsic geometry. Statistics and machine learning can leverage on this rich structure in order to achieve efficiency and semantic generalization. Extracting geometry from data is therefore a fundamental challenge which by itself defines a statistical, computational and unsupervised learning problem. To this end, symmetries and metrics are two fundamental objects which are ubiquitous in continuous and discrete geometry. Both are suitable for data-driven approaches since symmetries arise as interactions and are thus collectable in practice while metrics can be induced locally from the ambient space. In this thesis, we address the question of extracting geometry from data by leveraging on symmetries and metrics. Additionally, we explore methods for statistical inference exploiting the extracted geometric structure. On the metric side, we focus on Voronoi tessellations and Delaunay triangulations, which are classical tools in computational geometry. Based on them, we propose novel non-parametric methods for machine learning and statistics, focusing on theoretical and computational aspects. These methods include an active version of the nearest neighbor regressor as well as two high-dimensional density estimators. All of them possess convergence guarantees due to the adaptiveness of Voronoi cells. On the symmetry side, we focus on representation learning in the context of data acted upon by a group. Specifically, we propose a method for learning equivariant representations which are guaranteed to be isomorphic to the data space, even in the presence of symmetries stabilizing data. We additionally explore applications of such representations in a robotics context, where symmetries correspond to actions performed by an agent. Lastly, we provide a theoretical analysis of invariant neural networks and show how the group-theoretical Fourier transform emerges in their weights. This addresses the problem of symmetry discovery in a self-supervised manner.  

Abstract [sv]

Datamängder innehar en naturlig inneboende geometri. Statistik och maskininlärning kan dra nytta av denna rika struktur för att uppnå effektivitet och semantisk generalisering. Att extrahera geometri ifrån data är därför en grundläggande utmaning som i sig definierar ett statistiskt, beräkningsmässigt och oövervakat inlärningsproblem. För detta ändamål är symmetrier och metriker två grundläggande objekt som är allestädes närvarande i kontinuerlig och diskret geometri. Båda är lämpliga för datadrivna tillvägagångssätt eftersom symmetrier uppstår som interaktioner och är därmed i praktiken samlingsbara medan metriker kan induceras lokalt ifrån det omgivande rummet. I denna avhandling adresserar vi frågan om att extrahera geometri ifrån data genom att utnyttja symmetrier och metriker. Dessutom utforskar vi metoder för statistisk inferens som utnyttjar den extraherade geometriska strukturen. På den metriska sidan fokuserar vi på Voronoi-tessellationer och Delaunay-trianguleringar, som är klassiska verktyg inom beräkningsgeometri. Baserat på dem föreslår vi nya icke-parametriska metoder för maskininlärning och statistik, med fokus på teoretiska och beräkningsmässiga aspekter. Dessa metoder inkluderar en aktiv version av närmaste grann-regressorn samt två högdimensionella täthetsskattare. Alla dessa besitter konvergensgarantier på grund av Voronoi-cellernas anpassningsbarhet. På symmetrisidan fokuserar vi på representationsinlärning i sammanhanget av data som påverkas av en grupp. Specifikt föreslår vi en metod för att lära sig ekvivarianta representationer som garanteras vara isomorfa till datarummet, även i närvaro av symmetrier som stabiliserar data. Vi utforskar även tillämpningar av sådana representationer i ett robotiksammanhang, där symmetrier motsvarar handlingar utförda av en agent. Slutligen tillhandahåller vi en teoretisk analys av invarianta neuronnät och visar hur den gruppteoretiska Fouriertransformen framträder i deras vikter. Detta adresserar problemet med att upptäcka symmetrier på ett självövervakat sätt.

Place, publisher, year, edition, pages
KTH Royal Institute of Technology, 2024. p. 61
Series
TRITA-EECS-AVL ; 2024:26
Keywords
Machine Learning, Computational Geometry, Voronoi, Delaunay, Symmetry, Equivariance
National Category
Computer Sciences
Research subject
Computer Science
Identifiers
urn:nbn:se:kth:diva-344129 (URN)978-91-8040-864-6 (ISBN)
Public defence
2024-04-09, https://kth-se.zoom.us/j/61437033234?pwd=dnBpMnYyaDVWWC95RHNTakNXWkNRQT09, F3 (Flodis) Lindstedtsvägen 26, Stockholm, 09:00 (English)
Opponent
Supervisors
Note

QC 20240304

Available from: 2024-03-04 Created: 2024-03-02 Last updated: 2024-03-08Bibliographically approved

Open Access in DiVA

fulltext(6229 kB)112 downloads
File information
File name FULLTEXT01.pdfFile size 6229 kBChecksum SHA-512
2754539d808837adc601109f3477bc5861d44f180d8c65538857df695b6c2622b954eb21291903657d94cd3e4309e521a93a7b47d5e619ce3172dc86a074e1fa
Type fulltextMimetype application/pdf

Other links

ScopusElectronic full texthttps://proceedings.mlr.press/v162/kravberg22a.html

Authority records

Kravchenko, AlexanderMarchetti, Giovanni LucaPolianskii, VladislavVarava, AnastasiiaPokorny, Florian T.Kragic, Danica

Search in DiVA

By author/editor
Kravchenko, AlexanderMarchetti, Giovanni LucaPolianskii, VladislavVarava, AnastasiiaPokorny, Florian T.Kragic, Danica
By organisation
Organic chemistryRobotics, Perception and Learning, RPL
Computer SciencesControl Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 112 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

urn-nbn

Altmetric score

urn-nbn
Total: 211 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf