Elucidating the fine-scale structural morphology of nanocellulose by nano infrared spectroscopyShow others and affiliations
2023 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 302, article id 120320Article in journal (Refereed) Published
Abstract [en]
Nanoscale infrared (IR) spectroscopy and microscopy, enabling the acquisition of IR spectra and images with a lateral resolution of 20 nm, is employed to chemically characterize individual cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) to elucidate if the CNCs and CNFs consist of alternating crystalline and amorphous domains along the CNF/CNC. The high lateral resolution enables studies of the nanoscale morphology at different domains of the CNFs/CNCs: flat segments, kinks, twisted areas, and end points. The types of nano-cellulose investigated are CNFs from tunicate, CNCs from cotton, and anionic and cationic wood-derived CNFs. All nano-FTIR spectra acquired from the different samples and different domains of the individual nanocellulose particles resemble a spectrum of crystalline cellulose, suggesting that the non-crystalline cellulose signal observed in macroscopic measurements of nanocellulose most likely originate from cellulose chains present at the surface of the nanocellulose particles.
Place, publisher, year, edition, pages
Elsevier BV , 2023. Vol. 302, article id 120320
Keywords [en]
Nanocellulose, Cellulose nanocrystals, Cellulose nanofibrils, Crystalline and amorphous domains, Nano-FTIR spectroscopy, S-SNOM
National Category
Paper, Pulp and Fiber Technology
Identifiers
URN: urn:nbn:se:kth:diva-322846DOI: 10.1016/j.carbpol.2022.120320ISI: 000891746700002PubMedID: 36604038Scopus ID: 2-s2.0-85142692194OAI: oai:DiVA.org:kth-322846DiVA, id: diva2:1724747
Note
QC 20230109
2023-01-092023-01-092023-07-03Bibliographically approved