kth.sePublications
Planned maintenance
A system upgrade is planned for 10/12-2024, at 12:00-13:00. During this time DiVA will be unavailable.
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Energy and exergy characteristics of an ethanol-fueled heavy-duty SI engine at high-load operation using lean-burn combustion
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics and Embedded Control Systems.ORCID iD: 0000-0003-4485-4019
KTH, School of Industrial Engineering and Management (ITM), Machine Design (Dept.), Mechatronics and Embedded Control Systems.ORCID iD: 0000-0002-2744-8177
Volvo Construction Equipment, Bolindervägen 5, Eskilstuna, SE-63185, Sweden.ORCID iD: 0000-0002-0705-2677
KTH, School of Engineering Sciences (SCI), Engineering Mechanics, Fluid Mechanics and Engineering Acoustics.ORCID iD: 0000-0001-7330-6965
Show others and affiliations
2023 (English)In: Applied Thermal Engineering, ISSN 1359-4311, E-ISSN 1873-5606, ISSN 1359-4311, p. 120063-120063, article id 120063Article in journal (Refereed) Published
Abstract [en]

Ethanol, as the most produced renewable biofuel, is considered a promising low-carbon alternative to petroleum-based fuels in the transport sector due to its high energy density and auto-ignition resistance. The lean-burn combustion in spark-ignition (SI) engines has the potential to further improve thermal efficiency in regard to knock mitigation and the reduction of combustion temperature. However, the characteristics of lean-burn combustion in an ethanol-fueled engine in relation to the combustion losses and the gas-exchange process remain unclear, especially for high-load operation. This study contributes with a deeper understanding of the high-load performance of an ethanol-fueled heavy-duty SI engine using lean-burn combustion. Based on the experimental results from a single-cylinder engine test, a 6-cylinder engine model is built by integrating a validated predictive combustion model to characterize the lean-burn combustion process. The engine’s thermal efficiency and combustion phasing are evaluated for knock limited operation and then compared to the theoretical optimum which is regardless of knock. The energy and exergy balances are applied to evaluate the effect of dilution with excess air ratios up to 1.8. Losses through heat transfer, exhaust flow, and incomplete combustion are quantified. In addition, entropy generated through combustion is discussed to identify the relationship between exergy destruction and different operating conditions. In the context of lean-burn combustion, the thermal efficiency at high-load operation incrementally increases from 40.4% at stoichiometric condition to 47.3% at an excess air ratio of 1.8. At the same time, the exergy destruction through combustion increases by 3.3 percentage points across the selected dilution range. Furthermore, the challenging requirements to realize lean-burn combustion with lower exhaust gas temperatures and higher intake boost pressures is assessed through an exergy analysis of the turbocharging system.

Place, publisher, year, edition, pages
Elsevier BV , 2023. p. 120063-120063, article id 120063
Keywords [en]
Ethanol; Lean-burn combustion; Knock; Thermal efficiency; Exergy loss; Heavy-duty SI engines
National Category
Energy Engineering
Research subject
Energy Technology; Machine Design
Identifiers
URN: urn:nbn:se:kth:diva-323203DOI: 10.1016/j.applthermaleng.2023.120063ISI: 000924802400001Scopus ID: 2-s2.0-85146960134OAI: oai:DiVA.org:kth-323203DiVA, id: diva2:1729612
Funder
Swedish Energy Agency, 33834-3
Note

QC 20230123

Available from: 2023-01-21 Created: 2023-01-21 Last updated: 2023-10-12Bibliographically approved
In thesis
1. Exergy Evaluation of Engine Operations: Combustion Process to Exhaust Flow
Open this publication in new window or tab >>Exergy Evaluation of Engine Operations: Combustion Process to Exhaust Flow
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Transitioning the transport sector to clean energy sources is crucial for mitigating greenhouse gas emissions and achieving carbon neutrality. A collaborative solution, combining both electric vehicles and combustion engines using renewable fuels, may prove more effective than competitive ones. This necessitates a focus on developing sustainable combustion engines by improving their efficiency through renewable energy sources and innovative technologies.

This thesis uses exergy analysis to evaluate engine efficiency, losses, and irreversibilities, as well as the work potential of exhaust flows. Particular emphasis is placed on the implications of these exergy analyses in relation to engine operations, especially concerning combustion processes and exhaust pulsations. Exergy analysis quantifies the maximum work extractable from an energy source, enabling the identification and quantification of losses and inefficiencies in thermal processes. A dual-fuel marine engine with two-stage turbocharging and an ethanol-fueled heavy-duty spark-ignition (SI) engine using lean burn are examined with validated one-dimensional engine models to analyze engine performance and losses from an exergy perspective. In the tested marine engine, irreversibilities are quantified and categorized into three types, with combustion irreversibility being the most significant, followed by losses through gas exchange and heat dissipation. In the ethanol-fueled SI engine, the effect of lean-burn combustion at high load is investigated through the excess air ratio up to 1.8, assessing its impact on thermal efficiency, combustion phasing, as well as energy and exergy distributions. Results indicate that employing lean burn improves engine efficiency with advanced combustion phasing but also leads to more exergy destruction. The importance of maintaining high exergy recovery through turbocharging for diluted operation is also highlighted.

Additionally, high-frequency exhaust pulsations resulting from valve motion pose challenges in accurately resolving exhaust energy and exergy. To address this, this thesis investigates methods for exhaust pulse characterization and measurement under unsteady flow conditions. Sensitivity analyses, based on a heavy-duty engine simulation, highlight the importance of time-resolved mass flow measurements in quantifying the energy and exergy of exhaust pulsations. Subsequently, this research implements a Pitot tube-based approach to measure crank angle-resolved engine exhaust mass flow rates and to further analyze the effect of attenuated temperature measurements on resolving instantaneous mass flows. The findings indicate that temperature variations pertaining to exhaust flow conditions have only a relatively small impact on mass flow measurements. Based on the exhaust flow measurements, the mass flow characteristics of exhaust pulsations are also discussed with regard to the blow-down and scavenge phases.

Abstract [sv]

Att övergå transportsektorn till rena energikällor är avgörande för att minska utsläppen av växthusgaser och uppnå koldioxidneutralitet. En samarbetslösning som kombinerar både elbilar och förbränningsmotorer som använder förnybara bränslen kan visa sig vara mer effektiv än konkurrenskraftiga alternativ. Detta kräver fokus på att utveckla hållbara förbränningsmotorer genom att förbättra deras effektivitet med hjälp av förnybara energikällor och innovativa teknologier.

Den här avhandlingen använder exergianalys för att utvärdera motorernas effektivitet, förluster och oundvikliga förluster, samt arbetspotentialen hos avgasflöden. Särskild tonvikt läggs på konsekvenserna av dessa exergianalyser i förhållande till motoroperationer, särskilt vad gäller förbränningsprocesser och avgaspulser. Exergianalys kvantifierar det maximala arbetet som kan utvinnas från en energikälla och möjliggör identifiering och kvantifiering av förluster och ineffektiviteter i termiska processer. En tvåbränslemotor för sjöfart med tvåstegs turboladdning och en etanoldriven motor med lågbelastning och tändstiftning med gnistbildning (SI) undersöks med validerade en-dimensionella motormodeller för att analysera motorprestanda och förluster från både energi- och exergiperspektiv. I etanol-eldad SI-motor undersöks effekten av magert bränsleblandning vid hög belastning genom att variera överskottsluftförhållandet upp till 1,8 och bedöma dess påverkan på termisk verkningsgrad, förbränningsfasning samt energi- och exergifördelningar. Resultaten indikerar att användning av magert bränsleblandning förbättrar motorverkningsgraden med avancerad förbränningstidpunkt, men leder också till mer exergiförlust. Vikten av att upprätthålla hög exergiåtervinning genom turboladdning för utspädd drift framhålls också.

Dessutom medför högfrekventa avgaspulser som uppstår på grund av ventilmotion utmaningar när det gäller att noggrant fastställa avgasenergi och exergi. För att tackla detta undersöker denna avhandling metoder för karakterisering och mätning av avgaspulsar under instabila flödesförhållanden. Känslighetsanalyser, baserade på en simulering av en tung lastbilsmotor, understryker vikten av tidsupplösta massflödesmätningar för att kvantifiera energin och exergin hos avgaspulsarna. Därefter implementerar denna forskning en metod baserad på Pitot-rör för att mäta vevvinkelupplösta massflöden från motorns avgaser och för att ytterligare analysera effekten av dämpad temperaturmätning på att fastställa ögonblickliga massflöden. Resultaten visar att temperaturvariationer relaterade till avgasflödesförhållandena endast har en relativt liten påverkan på massflödesmätningarna. Baserat på mätningarna av avgasflödet diskuteras också massflödets egenskaper i samband med utblåsnings- och skavenging-faserna.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 99
Series
TRITA-ITM-AVL ; 2023:30
Keywords
Thermal efficiency, Exergy analysis, Marine engine, Lean-burn combustion, Pulsating flow measurement, Pitot tube, Sensitivity analysis, Energy and exergy losses, Termisk verkningsgrad, Exergianalys, Marinmotor, Magertbränningsförbränning, Pulserande flödesmätning, Pitotrör, Känslighetsanalys, Energiförluster och exergiförluster
National Category
Energy Engineering Other Mechanical Engineering
Research subject
Machine Design; Energy Technology
Identifiers
urn:nbn:se:kth:diva-338016 (URN)978-91-8040-732-8 (ISBN)
Public defence
2023-11-16, Gladan / https://kth-se.zoom.us/j/66874899819, Brinellvägen 85, Stockholm, 14:00 (English)
Opponent
Supervisors
Projects
CCGEx – Competence Center for Gas Exchange
Funder
Swedish Energy Agency, 33834-3
Available from: 2023-10-19 Created: 2023-10-12 Last updated: 2023-11-01Bibliographically approved

Open Access in DiVA

fulltext(7411 kB)159 downloads
File information
File name FULLTEXT01.pdfFile size 7411 kBChecksum SHA-512
9a2e8063491e4dbdd9878e939466033782a8ddcbdf9acd66c8d6cca92bca36e8293a9edcaa33b9e384e976cb1f2e15be9b240f972b40d504e7289895effadf15
Type fulltextMimetype application/pdf

Other links

Publisher's full textScopus

Authority records

Hong, BeichuanLius, AndreasMahendar, SenthilMihaescu, MihaiCronhjort, Andreas

Search in DiVA

By author/editor
Hong, BeichuanLius, AndreasMahendar, SenthilMihaescu, MihaiCronhjort, Andreas
By organisation
Mechatronics and Embedded Control SystemsFluid Mechanics and Engineering Acoustics
In the same journal
Applied Thermal Engineering
Energy Engineering

Search outside of DiVA

GoogleGoogle Scholar
Total: 159 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 446 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf