kth.sePublications
Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Construction and Validation of a New Naive Sequestrin Library for Directed Evolution of Binders against Aggregation-Prone Peptides
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.ORCID iD: 0000-0001-6558-0702
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.ORCID iD: 0000-0002-5192-7362
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science.ORCID iD: 0000-0002-9282-0174
KTH, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH), Protein Science, Protein Engineering.ORCID iD: 0000-0001-9423-0541
2023 (English)In: International Journal of Molecular Sciences, ISSN 1661-6596, E-ISSN 1422-0067, Vol. 24, no 1, article id 836Article in journal (Refereed) Published
Abstract [en]

Affibody molecules are small affinity proteins that have excellent properties for many different applications, ranging from biotechnology to diagnostics and therapy. The relatively flat binding surface is typically resulting in high affinity and specificity when developing binding reagents for globular target proteins. For smaller unstructured peptides, the paratope of affibody molecules makes it more challenging to achieve a sufficiently large binding surface for high-affinity interactions. Here, we describe the development of a new type of protein scaffold based on a dimeric form of affibodies with a secondary structure content and mode of binding that is distinct from conventional affibody molecules. The interaction is characterized by encapsulation of the target peptide in a tunnel-like cavity upon binding. The new scaffold was used for construction of a high-complexity phage-displayed library and selections from the library against the amyloid beta peptide resulted in identification of high-affinity binders that effectively inhibited amyloid aggregation.

Place, publisher, year, edition, pages
MDPI AG , 2023. Vol. 24, no 1, article id 836
Keywords [en]
affibody, A beta, Alzheimer's disease, phage display, sequestrins, directed evolution
National Category
Biochemistry Molecular Biology
Identifiers
URN: urn:nbn:se:kth:diva-323584DOI: 10.3390/ijms24010836ISI: 000911053700001PubMedID: 36614273Scopus ID: 2-s2.0-85145977083OAI: oai:DiVA.org:kth-323584DiVA, id: diva2:1735295
Note

QC 20230208

Available from: 2023-02-08 Created: 2023-02-08 Last updated: 2025-02-20Bibliographically approved
In thesis
1. Development of new affinity proteins for neurodegenerative disorders
Open this publication in new window or tab >>Development of new affinity proteins for neurodegenerative disorders
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Neurodegenerative disorders include a full spectrum of diagnoses, including dementias and other neuronal diseases, characterised by degradation of neurons in the brain occurring along with disease progression. Amongst the dementias, the most prevalent are Alzheimer’s (AD) and Parkinson’s disease (PD) that affect millions of people worldwide. During the last years, advancements in potential treatments have been made where the first two clinical antibodies have been approved by the US Food and Drug Administration (FDA) for a disease modifying effect on Alzheimer’s disease.

As alternatives to antibodies, other types of affinity reagents that are based on non-immunoglobulin protein scaffolds are also investigated. Such alternative scaffolds often demonstrate distinct and complementary properties compared to antibodies. In this thesis, the development of a new type of affinity protein scaffold called sequestrin is described. Sequestrins are derived from the affibody molecule and comprise two heterogenic subunits with truncated N-terminals fused as a head-to-tail construct. Sequestrins undergo a structural rearrangement upon target binding and forms a stabile complex. The scaffold is designed for interactions with disease-related amyloidogenic peptides e.g. amyloid beta and alpha-synuclein involved in AD and PD, respectively. In the first paper, a sequestrin library was developed and its compatibility with phage display was investigated. Successful panning against the amyloid beta peptide resulted in binders with high affinity. Further on in paper II, the alpha-synuclein peptide was targeted and sequestrins with low nanomolar affinities were obtained. All sequestrins displayed structural rearrangement upon target engagement, which stabilized the interaction to the target peptides and further inhibited toxic aggregation, opening up for future studies of disease modifying effects in vivo.

When targeting the brain, passage through the blood–brain barrier (BBB) is an obstacle that needs to be addressed to reach sufficiently high therapeutic concentrations. To overcome this barrier, brain shuttles have been developed with the capability to transport a cargo over the BBB. One such mechanism of transportation is by receptor-mediated transcytosis, which is utilized by e.g. the transferrin receptor (TfR). In paper III, a TfR-targeting shuttle was investigated for BBB passage when fused to a sequestrin targeting the amyloid beta peptide, resulting in a higher penetration through the BBB, and maintained functionality of the sequestrin.

High-throughput in vitro methods would facilitate development of novel brain shuttles. Thus, in paper IV, a transwell system based on nanofibrillar silkmembranes with murine brain endothelial cells was developed. Evaluation of the method using a TfR-specific antibody demonstrated higher transfer over the barrier compared to an isotype control and the method has potential to facilitate screening of transcytosis capability of brain shuttles.

In paper V, TfR-specific affibody-based brain shuttles were developed and investigated for transcytosis capability using the in vitro transcytosis assay. A panel of affibody molecules were evaluated, demonstrating both cross-species reactivity to murine and human TfR and active receptor-mediated transcytosis. These candidates could thus potentially be used in further development of CNS-targeting therapeutics.

In conclusion, a new sequestrin scaffold was developed that can be utilised for targeting amyloidogenic peptides found in neurodegenerative disorders. An affibody-based brain shuttle was also developed, which showed transcytosis capability. In the future, the new brain shuttle might be combined with sequestrins to create multifunctional fusion proteins for facilitated delivery over the BBB, which hopefully can result in therapeutic concentrations in the brain even when administered with a lower dosage.

Abstract [sv]

Neurodegenerativa sjukdomar är en samlingsterm för olika tillstånd som bland annat inkluderar demenssjukdomar som Alzheimers och Parkinsons sjukdom, där hjärnans neuroner degraderas med sjukdomsutvecklingen. Miljontals personer är drabbade av dessa sjukdomar och tyvärr finns det få tillgängliga behandlingar. Nyligen har två antikroppar godkänts av amerikanska läkemedelsverket (the US Food and Drug Administration, FDA) som läkemedel för behandling av Alzheimers sjukdom, och dessa två är de första i sitt slag som påverkar sjukdomsförloppet.

I denna avhandling beskrivs utvecklingen av en ny typ av proteiner som kallas sequestriner, vilka är speciellt lämpade för bindning till aggregeringsbenägna amyloida proteiner som ofta kopplas till neurodegenerativa sjukdomar. Strukturen hos sequestrinerna undersöktes för möjligheten att binda samt blockera aggregering av amyloid beta och alfa-synuklein, proteiner som förekommer i Alzheimers samt Parkinsons sjukdom. Utvecklingen av ett nytt sequestrinbiblioteket och dess kompabilitet för användning i selektion med fag-display mot amyloid beta beskrivs i artikel I och mot alfa-synuklein i artikel II. Sequestrinerna som togs fram uppvisade hög bindningsstyrka samt inhiberade aggregering av målproteinerna. Transport av molekyler över blod–hjärnbarriären är strikt reglerad, varmed det behövs speciella transportörer för att nå hjärnan. Essentiella molekyler som inte når hjärnan via adsorption eller diffusion kan transporteras via receptor-medierad transcytos, till exempel via transferrinreceptorn (TfR) som normalt tar upp transferrin som binder till järn. I artikel III undersöktes en tidigare version av en sequestrin som binder amyloid beta för dess möjlighet att länkas till en TfR- medierad transportör för att komma över blod–hjärnbarriären. Fusionsproteinet visade en bibehållen funktionalitet och ett ökat upptag till cerebrospinalvätskan i hjärnan, sett för den variant med länkad TfR-transportör jämfört med sequestrin utan transportör.

För att kunna utvärdera aktiv transcytos utvecklades en metod för att utvärdera och ranka denna egenskap in vitro. Detta kan göras genom en ”transwell”-metod där ett nanofiber-membran av rekombinant spindelsilke används för att stödja tillväxten av hjärn-endotelceller. Med hjälp av fluorescens kan därav transcytos studeras och utvärderas. I artikel IV kunde en tidigare validerad TfR-transportör urskiljas från negativa kontrollen i denna metod.

I artikel V beskrivs arbetet med att utveckla ett antal varianter av affibodymolekyler med målet att fungera som transportörer via TfR för transport in till hjärnan. Dessa affibodymolekyler karakteriserades för sin funktion att binda till både humant och murint cellulärt uttryckt TfR. Vidare visades det att även andra generationens affibodymolekyler för TfR kunde genomgå transcytos över barriärmodellen.

Sammanfattningsvis presenteras det i denna avhandling en utveckling av sequestrinstrukturen och framtagande av nya bindare för inhibering av aggregationsprocessen hos proteiner som frekvent återfinns inom neurodegenerativa sjukdomar, samt utvecklingen utav affibody-transportörer över blod–hjärnbarriären.

Place, publisher, year, edition, pages
Stockholm: KTH Royal Institute of Technology, 2023. p. 113
Series
TRITA-CBH-FOU ; 2023:7
Keywords
Protein engineering, sequestrins, amyloid beta, alpha-synuclein, phage display, affibodies, blood–brain barrier, Transferrin receptor, receptor-mediated transcytosis, recombinant spider silk
National Category
Biochemistry Molecular Biology
Research subject
Biotechnology
Identifiers
urn:nbn:se:kth:diva-324431 (URN)978-91-8040-499-0 (ISBN)
Public defence
2023-03-24, F3, Lindstedtsvägen 26, via Zoom: https://kth-se.zoom.us/j/65440212256, Stockholm, 10:00 (English)
Opponent
Supervisors
Note

QC 2023-03-02

Available from: 2023-03-02 Created: 2023-03-02 Last updated: 2025-02-20Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textPubMedScopus

Authority records

Hjelm, Linnea C.Lindberg, HannaStåhl, StefanLöfblom, John

Search in DiVA

By author/editor
Hjelm, Linnea C.Lindberg, HannaStåhl, StefanLöfblom, John
By organisation
Protein ScienceProtein Engineering
In the same journal
International Journal of Molecular Sciences
BiochemistryMolecular Biology

Search outside of DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric score

doi
pubmed
urn-nbn
Total: 217 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf